Problem Of the Week

Consider a pencil that stands upright on its tip and then falls over. Idealize the pencil as a mass m sitting at the end of a massless rod of length l. Assume that the pencil makes an initial (small) angle θ_0 with the vertical, and that its initial angular speed is ω_0. The angle will eventually become large, but while it is small we can assume $\sin \theta \approx \theta$.

- Using this assumption, find θ as a function of time.

Can you make the pencil balance for an arbitrarily long time by making the initial θ_0 and ω_0 sufficiently small? You might think so, but no. Heisenberg’s uncertainty principle $\Delta x \Delta p \gtrsim \hbar$ (to within a factor of order unity) puts a constraint on the initial position and momentum of the particle.

- Using the uncertainty principle, find the maximum time for your solution $\theta(t)$ to become of order 1. (Assume $m = 0.01$ kg, and $l = 0.1$ m.)

This is roughly the maximum time the pencil can balance.

Check your answer at the undergraduate news blog:

www.physics.ncsu.edu/undergraduate/newsblog.php

NCSU Undergraduate Physics Program
POW# 4