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ABSTRACT 
We address feasibility of adaptive transmission for 
rapidly varying fading channels encountered in mobile 
communication systems. Due to rapid channel variations 
and the feedback delay, implementation of adaptive 
transmission in these channels requires accurate 
prediction of future channel conditions.  We describe the 
design and performance of adaptive transmission methods 
enabled by the Long Range Fading Prediction algorithms 
(LRP) for Orthogonal Frequency Division Multiplexing 
(OFDM) and slow Frequency-Hopping Spread Spectrum 
(FH/SS) systems. The LRP algorithms are tested with a 
modified Jakes model and our realistic physical model. 
To enable channel loading for adaptive OFDM 
(AOFDM), robust adaptive prediction methods that track 
channel parameter variations are developed and 
compared. Feasibility of AOFDM for rapidly varying 
mobile radio channels is demonstrated, with bit rates 
approaching those for channels with ideal knowledge of 
the channel state information (CSI).  For FH/SS systems 
that employ coherent detection, we utilize correlated 
fading to predict future CSI for the upcoming frequency 
based on channel observations of other frequencies. This 
LRP method is utilized in adaptive modulation to mitigate 
the effects of fading. Analysis and simulation results 
show that while prediction is not as reliable for FH/SS as 
for AOFDM, significant performance gains are achieved 
relative to non-adaptive methods.  
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1.  Introduction 
 
In mobile wireless communications, system performance 
is severely degraded due to rapidly time-variant multipath 
fading. Traditional communication systems designed for 
the worst-case channel conditions use a fixed link margin 
to maintain acceptable performance when the channel 
quality is poor, resulting in low bandwidth and power 
efficiency. Since high-speed data transmission is desired 
in future wireless communication systems, it is important 
to improve the bandwidth efficiency while maintaining 
the low power constraint. To realize this goal, one 

solution is to adapt the parameters of the transmitted 
signal to the channel conditions [1-3]. 
 
However, the performance of the adaptive transmission 
systems depends on the availability of the accurate 
Channel State Information (CSI). In the adaptive 
transmission systems, the CSI is estimated by the receiver 
and sent to the transmitter through a reliable feedback 
channel. Due to the delay associated with channel 
estimation and feedback, and the transmission format 
constraints, the CSI at the time of transmission is usually 
different from the CSI at the time of channel estimation. 
Thus, the outdated CSI is not sufficient for the adaptive 
transmission. For rapidly varying mobile radio channels, 
even a small delay will result in significant performance 
degradation. To realize the potential of adaptive 
transmission, it is necessary to predict the channel several 
milliseconds ahead [4-8]. 
 
In this paper, we investigate feasibility of adaptive 
transmission for frequency selective channels. First, we 
focus on Orthogonal frequency Division Multiplexing 
(OFDM) [9] that has been proposed for use in high-speed 
wireless data applications. Adaptive OFDM (AOFDM) 
system, similarly to adaptive modulation for single carrier 
flat fading channel [1,2], involves optimizing the 
modulation level and the transmit power over the entire 
frequency band to maximize the spectral efficiency. 
Several practical integer-bit and power allocation 
algorithms addressed in [10-13] perform the optimum or 
near-optimum loading of bit and power in an OFDM 
frame. We investigate the potential of AOFDM for 
rapidly varying mobile channels with the adaptive Long 
Range Prediction algorithm (LRP) [4,5,7].  
 
Furthermore, we explore adaptive transmission aided by 
the LRP for slow frequency hopping (SFH) systems that 
employ coherent detection [14-16]. We adapt the 
modulation level and the transmission power to rapidly 
varying short-term channel variations using the LRP for 
FH channels. The objective is to increase the spectral 
efficiency subject to the power and reliability constraints. 
We also compare performance of LRP for OFDM and FH 
systems, and discuss limitations of LRP for FH channels. 
 



The remainder of this paper is organized as follows. 
Section 2 introduces the channel model and statistics used 
to perform and test our prediction algorithms. In Section 
3, we briefly describe the adaptive OFDM and FH 
systems, and the long-range prediction methods. In 
Section 4, adaptive bit and power loading aided by the 
LRP is discussed. Numerical results and comparisons are 
presented in Section 5. 
 
2.  Propagation Model 
 
The equivalent low-pass complex fading coefficients at K 
frequencies (or subcarriers), f1<f2<…<fk, where |fi−fj|<< 
the carrier frequency fc, is closely approximated as [17]: 

      c(fi,t)=∑
n=1

N
 A(n)exp{j(2πfd(n)t+φi(n)}, i = 1,2…K (1) 

In (1), for the nth path, A(n) is the (real) amplitude and 
fd(n) = fc (v/c) cos(θ(n)) = fdm cos(θ(n)) is the Doppler 
shift, where v, c, fdm, and θ(n) is the speed of the mobile, 
the speed of light, the maximum Doppler shift, and the 
incident angle of the path to the direction of the mobile, 
respectively. The phase difference for the nth path, φi(n) − 
φj(n) = 2π∆fτ(n) where ∆f = fj − fi is the frequency 
separation, and τ(n) is the excess propagation delay. Let 
{A,θ,τ,φ1} denote the set {A(n),θ(n),τ(n),φ1(n), n=1…N} 
that parameterizes this channel model. The c(fi,t) are 
distributed approximately as a zero mean complex 
Gaussian random variables. Therefore, the amplitudes 
|c(fi, t)| are Rayleigh distributed.  
 
For c(t) characterized as wide sense stationary 
uncorrelated scattering (WSSUS) [18], the ensemble 
average correlation function (EACF) for two fading 
signals with frequencies fi and fj with the time difference 
∆t and the frequency separation ∆f = fj − fi is defined as 
RE(∆t ,∆f) = E[c(fi,t)c*(fj,t+∆t)]. It represents the statistical 
average of the correlation function of the channel 
coefficient in (1) with randomized phase RE(∆t ,∆f) = 
E{A,θ,τ}{E{φ1}[c(fi,t)c*(fj,t+∆t)|{A,θ,τ}]} [7,19,20]. It can 
be factored into the time-domain correlation function 
Rt(∆t) and the frequency domain correlation function 
Rf(∆f) as [21]: 
 RE(∆t ,∆f) =ΩRt(∆t)Rf(∆f) (2) 
where Ω = E[|c(fi, t)|2] is the average power of the fading 
signals. (We normalize Ω to 1 throughout the paper.) 
 
Assume θ(n) is uniformly distributed around 2π, and the 
propagation delay τ(n) is exponentially distributed [17] 
with the probability density function (pdf) p(τ) = 1/σ 
exp{−τ/σ}, where σ is the rms delay spread [22]. The 
Jakes model [17] is widely used to model the fading 
channel. In this paper, we modify the Jakes model by 
observing that it is more realistic to model θ(n) as 
randomly distributed on the unit circle. We refer to this 
model as the random phase model (RPM). In the Jakes 
and RPM models discussed above, the parameters 

associated with the reflectors (the amplitudes, the Doppler 
shifts and the delays) are fixed once they are chosen. 
Thus, the correlation function does not vary in time. In 
real mobile radio environments, the correlation function is 
time-variant and is affected by many factors such as the 
number and locations of the reflectors, carrier frequency, 
vehicle speed, distance between the transmitter and the 
receiver, etc. The LRP predicts the channel far ahead, and 
requires large observation interval and memory span [5]. 
Therefore, the performance of this algorithm is affected 
by the variation in time of the parameters associated with 
the reflectors. In practice, this variation has to be taken 
into account in the estimation of the correlation function. 
Thus, realistic non-stationary modeling is necessary. 
 
A novel physical model based upon the method of images 
combined with diffraction was proposed [5,23]. This 
model can provide physical insights into the nature of the 
signal fading that affect the performance of the LRP 
algorithm. For testing the robustness of the LRP, we have 
created a data set where the CSI is dominated by different 
groups of reflectors for the first and second time intervals, 
respectively. The dominant amplitudes and phases 
undergo significant variation during the transition period. 
We use this transition interval to test the robustness of the 
LRP to parameter variation in the rest of the paper. 
 
3.  Long Range Prediction for OFDM and 
FH/SS Channels 
 
Consider an OFDM signal with K subcarriers, symbol 
(block) duration Ts, and adjacent subcarrier (tone) spacing 
∆fs. Assume the channel bandwidth of the each subcarrier 
is much smaller than the coherence bandwidth and the 
channel state information does not change within one 
OFDM symbol duration Ts, but varies from symbol to 
symbol. The equivalent complex channel gain Hs[n, k] at 
nth symbol block and kth subcarrier can be modeled as the 
samples of the time-varying frequency selective channel 
in (1) with the time domain and frequency domain 
sampling interval Ts and ∆fs. 
 
In the uncoded AOFDM system aided by the LRP and 
reduced feedback, the input data is allocated to the 
subcarriers according to the CSI fed back from the 
receiver. The LRP is employed to enhance the CSI 
accuracy. Let a[n, k] denote the complex baseband 
symbols at nth block and kth tone. The received signal after 
OFDM demodulation can be expressed: 
 X[n, k] = Hs[n, k]a[n, k] + w[n, k] (3) 
where w[n, k] is complex additive white Gaussian noise 
with variance E[|w[n, k]|2] = N0. Then frequency domain 
coherent channel estimation of the complex symbols 
associated with each of the K subcarriers is employed. A 
2−D minimum mean square error channel estimator was 
proposed in [21]. Let  

 H~s[n, k] = Hs[n, k] + w~[n, k]  (4) 



denote the estimated CSI, where w~[n, k] is the estimation 
error modeled as white Gaussian noise with power 
spectrum N0

~ . We define the observation SNR as E[|Hs[n, 
k]|2]/N0

~ . The estimated CSI H~[n, k], k=1…K, can be 
reduced and fed back to the long-range predictor at the 
transmitter at low rate [7,19,20]. Alternatively, the 
predictor can be placed at the receiver between the 
channel estimation and the reduced feedback blocks. 
 
The optimum linear Minimum Mean Square Error 
(MMSE) prediction algorithm that utilizes previous 
symbols of multiple subcarriers [7,19] is very complex in 
practice. It can be shown that the following simplified 
approach is near-optimal [19]. For predicting the CSI 
H[n,k], we use only previously observed samples  of 
subcarrier k:  

 H^ [n, k] = ∑
j=1

p
 dj

*(n) H~(n − j, k) k = 1,2,…,K (5) 

While in general, the coefficient vector d(n) =  
[d1 d2…dp]T in (5) needs to be computed and adapted 
individually for each subcarrier, for our channel model, it 
is sufficient to employ the same filter coefficient vector 
d(n) to predict future CSI for each subcarrier [7]. Hence 
the filter coefficient vector d(n) should remain tone-
invariant resulting in significantly reduced computational 
complexity and greatly improved tracking ability for the 
adaptive prediction methods discussed in the following 
sections since all feedback observations can be used 
jointly to update the coefficients. We call this method 
simplified multiple carriers prediction (SMCP).  
 
The MMSE channel prediction in (5) relies on the 
knowledge of the time and frequency domain correlation 
functions. However, these correlation functions depend on 
the particular environment and usually are unknown. In 
addition, the coefficients d(n) need to be computed 
adaptively as the Doppler shifts in (1) vary with time. We 
employ the adaptive Least Mean Square (LMS) and 
Recursive Least Squares (RLS) algorithms, which do not 
require the knowledge of the correlation functions of the 
channel, to update the prediction filter coefficients for the 
OFDM system. The error between the desired response 
and the predicted CSI at subcarrier k is: 

 e[n, k] = H[n, k] − ∑
j=1

p
 dj

*[n] H~[n-j, k], k = 1…K. (6) 

The average mean square error (AMSE) over all 
subcarriers is  

 AMSE = J(n) = 
1
K∑k=1

K
 |e[n, k]|2 (7) 

This AMSE is used for updating the coefficients of the 
LMS and RLS algorithms described in [7,19], and a lower 
bound on AMSE tends to the conditional MMSE for the 
single carrier LRP Jsmin [19]. Note that using AMSE in 
SMCP, we adapt the coefficient vector d(n) jointly using 
the errors for all subcarriers. As discussed below, this 
improves accuracy and convergence relative to single 

carrier adaptive prediction [5]. We also observed that the 
prediction algorithm is more robust to noise in the 
feedback signals compared to the single carrier prediction 
for both the LMS and RLS algorithms if the adjacent 
subcarriers are employed for prediction. 
 
It is shown in [7,19] that the learning curve of the RLS 
method decays almost linearly with nK (the convergence 
rate is approximately K times faster than for single carrier 
prediction). Thus, SMCP improves the convergence rate 
and the steady state MSE for the RLS relative to the 
single carrier prediction. While the RLS has higher 
computational complexity than the LMS algorithm, its 
learning curve and the excess MSE Jex(n)=J(n)-Jsmin 
(where J(n) is given by (7) and Jsmin is a lower bound on 
AMSE) are significantly improved relative to the LMS. 
The RLS algorithm converges rapidly with almost no 
excess MSE, whereas the LMS algorithm converges more 
slowly with significant excess MSE relative to the RLS 
algorithm. The SMCP aided by the RLS algorithm is good 
at tracking the non-stationary channel. It remains robust 
during the transition period described in section 2 [7,19]. 
The tracking results for the LMS algorithm are much 
poorer with a relatively high MSE throughout the physical 
model data set. 
 
Next, we investigate LRP for slow frequency hopping 
systems that employ coherent detection. Assume that the 
total number of frequencies is q and the hopping rate is fh.  
Denote the frequency separation between adjacent 
frequencies as ∆f.  In this paper, we employ a randomly 
chosen periodic hopping pattern with length N=q, 
although the proposed methods are also applicable to non-
periodic hopping patterns. 
 
Let c(f(t),t) be the equivalent lowpass complex sample of 
the fading channel at time t and frequency f(t), where f(t) 
is the carrier frequency occupied at time t.  Assume 
fading is flat for each frequency and is described by (1). 
We employ the MMSE linear prediction method.  Assume 
the channel coefficients in (1) are sampled at the rate 
fs=1/Ts, and for an integer n, define 
c(f(n),n)=c(f(nTs),nTs).  The prediction ĉ(f(n+τ),n+τ) (τ is 
a positive integer) of the future channel coefficient 
c(f(n+τ),n+τ) based on p past observations c(f(n),n),…, 
c(f(n-p+1),n-p+1) is formed as 

 ĉ(f(n+τ),n+τ)=∑
j=0

p-1
dj(n)c(f(n–j),n–j). (8) 

The optimal prediction coefficients are computed as 
d(n)=R(n)-1r(n), where d(n)=[d0(n)…dp-1(n)]T, R(n) is the 
autocorrelation matrix with Rij(n)=E{c(f(n–i),n–i)c*(f(n–
j),n–j)}, and r(n) is the autocorrelation vector with 
rj(n)=E{c(f(n),n)c*(f(n–j),n–j)}. The resulting 
instantaneous MMSE of this prediction method is 
MMSE(n)=1–d(n)Tr(n) [5]. Because the hopping pattern 
is a random frequency sequence, a single prediction filter. 
does not exist. The prediction coefficients, determined by 
the sampling time and the hopping pattern, need to be re-



computed at the sampling rate. The MMSE for FH 
systems is computed as the average over all LP filters. 
When the channel correlation functions are not known at 
the transmitter, Rt(τ) and Rf(∆f) in [1] must be estimated 
and updated as new observations become available. In our 
investigation, pilot symbol aided channel estimation is 
used to estimate the channel correlation functions [24]. 
 
The optimal MMSE LRP described above is complex, 
because it requires inversion of large matrices at the 
sampling rate.  In [15,24], a recursive matrix update 
method was proposed. It significantly reduces the 
computation of the optimal LRP. Moreover, in [14], low 
complexity prediction methods were studied, and it was 
demonstrated that the optimal LRP method is required to 
achieve reliable prediction. In practice, c(f(n),n) are 
observed in the presence of noise.  The prediction error 
can be easily modified to include the effect of the noise, 
and noise reduction methods can be utilized to reduce the 
noise present in the observations [5,6].  
 
4.  Adaptive Channel Loading Aided by LRP 
 
For AOFDM, we employ channel loading optimization 
under the bit rate maximization (BRM) criterion, where 
the goal is to allocate the limited energy among the 
subcarriers to maximize the overall bit rate subject to a 
target bit error rate constraint [13]. In particular, we 
utilize a simplified loading method similar to [12] (see 
[19] for the detailed description).  
 
For each subcarrier we employ rectangular M(i)−QAM 
modulation [2] where M(1)=0, M(i)=2i−1, i=2…6. Let c^ 
denote the CSI obtained from the linear prediction 
algorithm (5) and c the actual complex gain at a certain 
subcarrier. Hence c^ and c are jointly complex Gaussian 
and their amplitudes α^  and α are both Rayleigh 
distributed. For subcarrier k, let P (= E[|a[n, k]|2] (3)) 
denote the transmitted signal power of the complex 
M(i)−QAM symbol that is determined by allocation 
algorithm. (Note the sum of the allocated powers for all 
subcarriers does not exceed the total power constraint 
Ptotal). Assume each subcarrier has the same noise power 
N0 (see (3)). The SNR γM(i) (= P/N0) required to employ 
M(i)−QAM modulation given the predicted channel gain 
α^  at the kth subcarrier can be found by numerical search to 
meet the target bit error rate BERtg (set to 10-3 in this 
paper): 

 BERtg = ⌡⌠
0

∞
BERM (i)(γM(i)x2)pα|α̂ (x)dx (9) 

where BERM(i), calculated from [25], is the bit error rate 
for the M−QAM modulation on the AWGN channel, and 
pα|α̂, the conditional probability density function of α 
given α^ , is given by [3,19]: 

p(α |α^ )= 
2α

(1−ρ)Ω I0(
2 ραα^

(1−ρ) ΩΩ^
) exp(−

1
1−ρ(

α2

Ω  + 
ρα^ 2

Ω^ )) , 

where the parameter ρ is the correlation coefficient 
between α2 and α^ 2: 

 ρ = 
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
 (10) 

and Ω=E{α2} = 1, Ω^ =E{α^ 2} and I0 is the 0th order 
modified Bessel function. Once the γM(i) are calculated for 
each modulation level and each subcarrier, they are used 
to implement the simplified loading algorithm in the 
presence of imperfect CSI. The only difference in the 
implementation (relative to the perfect CSI case) is that 
the SNR γM(i) in (9) is used in place of the ideal SNR 
required to achieve the BER with M(i)-QAM [25]. It is 
shown in [7,19] that there is negligible performance 
difference between the optimal loading method and our 
simplified approach. 
 
Similarly, in FH/SS, we employ the same adaptive 
modulation scheme. It is aided by LRP described in 
Section 3 in each dwell interval.  
 
5.  Numerical Results 
 
We use the RPM and the physical model to validate the 
performance of the LRP for the OFDM system. To test 
the performance of our prediction algorithm on the fading 
channel modeled by the RPM, N = 34 is chosen and 
multiple deterministic channel realizations are generated 
by using independent angles {θ} and propagation delays 
{τ}. The near –optimal prediction filter length p in (5) is 
50 for all LRP results in this paper [19,24]. The maximum 
Doppler shift of 100 Hz is used in both models. The rms 
delay spreads is approximately 1µs in both channel 
models. To construct an OFDM symbol, assume that the 
entire channel bandwidth, 800kHz, is divided into 128 
subcarriers. The symbol duration is 160µs. An additional 
5µs guard interval is used to provide protection from ISI 
due to channel multipath delay spread. Thus the total 
block length is 165µs and the subcarrier symbol rate is 
approximately 6KHz. For each subcarrier, the fading 
signal is sampled at the low rate of 466Hz for the LRP 
(the prediction range is 1/466Hz ≈ 2ms). In this paper, we 
assume reliable channel estimation and high effective 
SNR (80 dB) of the observed CSI. While the actual SNR 
of the observed samples is usually much lower, noise 
reduction techniques can be employed to decrease the 
estimation error greatly [5,6,21]. Moreover, our 
investigation in [19] shows that degradation due to lower 
effective SNR values (above 40 dB) is negligible. 
Therefore, accurate channel estimation assumed in this 
paper is realistic and is not a limiting factor in the 
performance of adaptive prediction. Interpolation is 
utilized to predict channel coefficients at the subcarrier 
symbol rate [5]. 
 
The average Bits per Symbol (BPS) of the AOFDM for 
different prediction algorithms for the RPM and physical 
channel models is plotted in Fig. 1. Perfect feedback is 
assumed. Comparison reveals that the RLS has better 



performance than the LMS algorithm for the RPM and 
non-stationary physical model. The performance of the 
RLS algorithm for the RPM is near-optimal (not shown), 
whereas the loss is less than 0.5 dB for the physical model 
compared to the perfect knowledge of CSI.  The 
performance of the AOFDM using the outdated CSI 
samples (1 ms delay) without prediction for the RPM is 
also shown in Fig. 1. Calculation of thresholds for this 
case was studied in [3]. We found that even very small 
delay causes significant loss of the bit rate for fast vehicle 
speeds when accurate LRP is not utilized.  
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Fig. 1. Comparison of average BPS performance for 
adaptive OFDM aided by different prediction methods for 
the RPM and physical model. 
 
For FH systems, we predict the channel coefficients of the 
next dwell interval.  We assume a typical hopping rate of 
SFH systems of 500 hops/second. Thus, the prediction 
range τTs=2ms is desirable. The sampling rate fs=2kHz is 
employed due to its best performance for the system 
parameters used in the simulations.  Since the sampling 
rate is much lower than the symbol rate, interpolation is 
performed within a dwell interval to predict fading 
coefficients for all data points.  We assume channel 
observations with SNR=100dB. We first use the standard 
Jakes model with N=34 to validate the performance of the 
proposed adaptive modulation method. The maximum 
Doppler shift is fdm=50Hz. A random hopping pattern 
with length of 32 is employed.  The BPS of adaptive 
modulation as a function of normalized adjacent 
frequency separation ∆fσ is plotted in Figure 2. We 
observe that the spectral efficiency degrades as ∆fσ 
increases.  The SFH benefits from adaptive transmission 
primarily when ∆fσ does not significantly exceed 0.1. As 
∆fσ grows, the spectral efficiency saturates and 
approaches that of non-adaptive modulation.  Thus, for 
large ∆fσ, the SFH will not benefit from adaptive 
transmission.  However, the benefit of frequency diversity 
is greater as ∆fσ increases.  
 
For example, assume a typical value of the delay spread 
of 1µs microsecond for outdoor radio channels [22] and a 
typical adjacent frequency separation of less than 100Hz 
[16]. Adaptive transmission aided by the proposed 
channel prediction method is feasible for these systems. It 

was also demonstrated in [14,15,24] that adaptive 
transmission is beneficial for other typical SFH 
parameters and moderate to high Doppler shifts. 
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Figure 2. BPS of adaptive modulation vs. ∆fσ for SFH 
system. 
 
Next, we use our physical model to investigate the 
performance in realistic non-stationary fading channels. A 
typical scenario and a challenging scenario are created to 
test the performance. The delay spread σ changes slowly 
in the typical case, while in the challenging case, σ 
changes rapidly over a wide range.   The performance 
comparison is presented in Figure 3.  Since the channel 
correlation functions vary faster in the challenging 
scenario than in the typical scenario, the prediction 
accuracy is worse in the challenging case.  While the BPS 
gain is lower for the physical model than for the Jakes 
model due to the channel parameter variations, significant 
improvement is still obtained relative to non-adaptive 
modulation. 
 
We observe significant loss in the bit rate of adaptive 
modulation aided by the LRP for FH channels relative to 
OFDM and narrowband channels. This loss is observed 
despite reduced maximum Doppler shift, and is further 
enhanced when our realistic physical model is employed 
rather than the Jakes model. For OFDM and flat fading 
channels, the observations are at the same frequency, and 
thus much greater prediction accuracy is achieved, 
enhanced by the SMCP method for OFDM systems (by 
comparing with Fig. 1, observe that this BPS is close to 
the “perfect CSI” curve in Fig. 3.)  Moreover, in OFDM 
channels, we employ fast adaptive tracking combined 
with LRP to achieve almost the same prediction accuracy 
for the physical model as for the Jakes model. The reason 
why we have not achieved similar gains for FH systems is 
that the observations were constrained by the hopping 
pattern, and thus distributed in frequency. This constraint 
results in suboptimal sampling in frequency domain, and 
precludes utilization of fast adaptive tracking techniques.  
 
6.  Conclusion 
 
Mobile radio AOFDM and adaptive FH systems aided by 
the long-range prediction were investigated. The 
simulation results demonstrated that accurate long range 



prediction is required to achieve the potential of these 
adaptive mobile radio systems for fast vehicle speeds and 
realistic delays. For AOFDM, the RLS LRP that uses 
combined observations of all carriers was shown to enable 
adaptive loading for the physical model and practical 
system parameters. For FH channels, the optimal MMSE 
long range channel prediction algorithm was introduced 
and shown to enable adaptive modulation for SFH. It was 
demonstrated that prediction capability of the LRP for FH 
systems is limited relative to the OFDM channels, since 
the observations in FH systems are constrained by the 
hopping pattern. 
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Figure 3. Performance comparison for the Jakes model 
and the physical model for SFH system. ∆fσ=0.05 
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