
A compact method for optical induction of proximal probe heating and elongation

Andres H. La Rosa
Department of Physics, Portland State University, Portland, OR 97207-0751

Hans D. Hallen
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202

A tapered, metal-coated, optical fiber probe will elongate when heated by light input through the fiber. The induced motion can be used for data storage or nano-structuring of a surface. The elongation produced by this alignment-free system is measured with force-feedback in a near-field scanning optical microscope (NSOM). The input light intensity controls the elongation magnitude, which ranges from a few nanometers to over 100 nm. A 1/2 mW input energy yields ~20 nm of probe elongation. The elongation quantified here can create artifacts in any experiment using pulsed laser light with NSOM or atomic force microscopy (AFM).

1. **Introduction**

Scanning proximal probes enable many types of nanoscale fabrication. Atoms can be moved one at a time to build surface structures with a scanning tunneling microscope (STM).¹ ² ³ Current bursts with an STM can create surface structures.⁴ Electrons injected from a STM into a metal thin film can produce terraces on the buried surface.⁵ ⁶ The STM can be used as an electron source for electron beam lithography,⁷ electron-assisted chemical vapor deposition,⁸ or to remove a surface layer.⁹ Near-field scanning optical microscopes (NSOMs) have been used to write magnetic bits,¹⁰ to
expose resists,11 to oxidize conjugated-polymer thin films,12 and, in combination with a current from the metal NSOM aperture, to locally modify the properties of high-temperature superconductor YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7-\delta} (Yitrium, Barium, Copper, Oxygen).13 Atomic force microscopes have been used as 'dip pens' for direct-write lithography,14 and to write bits into a substrate.15 A thermo-mechanical writing technique,16 by which optical pulses are coupled to a metallized tip of a tapered optical fiber, has been used in data storage applications, yielding areal densities above 10 Gbits/in2. In this paper we highlight that the thermo-mechanical technique can be extended to most scanning probe platforms, and should be usable without head-stage modification in fiber-based NSOM systems. No special alignments will be required at the microscope head. The probe can be constructed so that none of the light reaches the sample,17 when light absorption might alter the experiment. The thermal process at the probe is not characterized by a single time constant,18,19 but includes some that are rapid, resulting from expansion of the metal coating. This insures reasonable speed performance of the elongation device.20 At the heart of a NSOM thermo-mechanical method is the probe axial elongation, which we analyze and quantify in this paper.

2. Experiment

The probe is similar to that used in NSOM. It is constructed by heating and pulling an optical fiber in a commercial apparatus, and then coated with aluminum. Metal coating is required, since the primary coupling of the light to heat the probe is via multiple imperfect reflections that occur when the light coupled into the core of the fiber reaches the tapered region of the probe. The absorption of light in the metal coating
occurs mainly in the \(~ 100 \mu m\) proximity of the probe apex, as predicted by ray tracing based models21, and establishes a non-uniform axial temperature distribution22. The probes used in this work had open apertures at the end, as NSOM probes do, but this is not required and makes little difference in the operation since such a small fraction of the input light leaves the aperture. We studied the response of two very different probe geometrical classes to illustrate the robustness of the probe response to probe morphology. Electron microscope (SEM) images of the two classes of probes are shown in Figure 1. The 'chubby' tip has a very large aperture and a cone angle of 40 degrees. The 'skinny' tip has a smaller aperture and a 20 degrees cone angle near the apex. Both types of tips have similar structure far from the apex. The fiber tapers over a length of approximately 1 mm.

The experimental layout is shown in Figure 2. An acousto-optic modulator switches light from a laser, which is then coupled into the probe fiber. Several modulations were used, from blocking the beam manually to square wave modulation between 1 Hz and 10 Hz. We used visible (512 nm green from an argon ion laser) and infrared (1.15 \(\mu m\) from a HeNe laser) light, with 'on' powers of \(~0.5\) mW. The probe is mounted in an NSOM. The microscope holds the tip in a fixed position \(~10\) nm over a flat sapphire or silicon sample, without scanning the tip. The lateral force feedback maintains a constant tip-sample separation. Thus, the motion of the sample reflects the compensation for the probe elongation. Optical lever-arm amplification of the probe motion, measured by a properly-placed edge of a photodiode detector, provides the signal for lateral force detection23. The bandwidth of the lateral force detection scheme limited the temporal range over which probe elongation could be measured. When the time scale
of the probe elongation is too small for the feedback to follow, the probe deviates from its ~10 nm fixed distance from the surface. If the probe motion is fast and large enough, the probe will crash into the surface. This is the primary reason for using low frequency modulation and only 0.5 mW of power, which gives approximately 20 nm of probe motion, although we expect elongation dependence on the quality of the aluminum coating. For a square wave light motion, inducing a square wave probe elongation, the feedback will slew at its bandwidth of >1 kHz to return the probe-sample separation to its nominal value. Some transient error in positioning may result after the light switches.

3. Results and discussion

Examples of the measurements for a slender probe are shown in figures 3a and 3b. The nominal input power level of infrared and visible light is 0.5 mW in both cases. Notice the correlation between input power and the probe elongation, regardless of the wavelength. Although the elongation produced by the infrared light would appear greater than the one produced by the visible light, in figure 3b the opposite occurs. This is attributable to the fact that the actual power reaching the probe depends on many factors such as losses along the fiber and different coupling efficiency for infrared and visible light. The probe fiber is few-mode for the visible light, so the probe transmission is a strong function of the mode traveling in the fiber, i.e., the coupling into and positioning of the fiber. The fact that the probe elongation will be more sensitive to the energy input rather than to the particular wavelength chosen is understood on the basis that probe elongation relies on heating, and the large number of reflections within the probe insures that a significant fraction of any wavelength light is absorbed by imperfect reflections.
from the metal coating on the probe taper. The shape of the taper resembles a small version of a 'witches hat' beam dump.

To determine whether significant thermal energy is transferred to the sample when it is in close proximity to the sample, the elongation was measured as a function of probe-sample distance, shown in Figure 4. On the length scales of interest here, thermal conduction would be the prime mode of heat transfer.24 If significant energy flowed from the tip to the sample, one would expect the probe elongation to decrease as the separation does. No clear trend exists in the data, suggesting that the heat transfer is negligible. This result is expected, as most NSOM measurements, including those on cells,25,26 have not found any detectable damage due to heating. Liquid crystals represent one of the few samples for which thermal damage has been indicated.27

The modulation level is determined by the input power. We are somewhat limited in the range of powers that we can study using force feedback to measure the probe elongation, since the probe may transiently crash into the sample. Alternatively, one can use the Fabry-Perot cavity formed by a flat surface and the NSOM-probe flat-termination to estimate the probe elongation28 and thus avoid the limited bandwidth feedback response, which is described in more detail elsewhere.29 A probe coated with aluminum will degrade if the temperature reaches half the melting temperature of Al, or about 470 K, when multiple internal reflections, diffusion, and surface energy combine to make the Al ball up. Using this as a limit, we estimate the maximum elongation of the probe to be \(~200\) nm, at 4.5 mW of input power.

We have previously studied the temporal optical throughput response of the classes of probes used here, both before and after probe damage.18 Those results indicate
a response independent of frequency to about 20 Hz. At higher frequencies, it falls logarithmically. The process cannot be modeled as a single time constant response, which would fall as 1/f. This is common to many thermal problems. It means that the probe elongation is still present at higher frequencies, and that this probe elongation method is applicable for fast probe motion. The amplitude will be 1/5 its low frequency value at 10 kHz. The slow variation of the optical throughput implies that a significant fraction of the taper is heated ($L \sim 100 \mu m$), which makes these slow motion states to be associated with the bigger contribution to the probe elongation ΔL. The faster motion states are then associated to much smaller regions near the tip, and contribute less to ΔL.

In this regard, it is worth noticing that this ‘rainbow’ of thermal time constants available in NSOM-like probes contains the fast time constants reported in thermo-mechanical writing processes using AFM probes30,31. AFM probes lack, however, the slow time constant because they lack the shank present in NSOM-like probes that provides an additional channel for heat dissipation and protects better the tip. The slowest time constants do not matter in data writing as long as the bits are written fast enough that the probe elongation stays in a dynamic equilibrium value by either (a) the tip is not allowed to heat or cool by amounts that vary on that time scale or (b) run a slow feedback loop to compensate.

Because the temperature distribution along the axial direction of the probe is not uniform, the contribution to the total probe elongation from the apex region can be more significant than the contribution from the probe shank. Using temperature profiles obtained by M. Stahelin et al.22, and temperature estimates from our previous work18 and that of others studying the temperature rise of NSOM probes,32 we have estimated the
contribution to the probe elongation from the different sections of a NSOM probe. This is shown in Figure 5. According to this temperature profile, a 1 mm long bare fiber (coefficient of thermal expansion $\alpha_{\text{quartz}} = 0.5 \times 10^{-6}/^\circ\text{K}$) will contribute only 6 nm to the total elongation. Had we considered pure aluminum ($\alpha_{\text{Al}} = 2.35 \times 10^{-6}/^\circ\text{K}$) we would have obtained 30 nm probe elongation, which is in excess to what we typically observe in our probes. The latter case does not take into account that there exists high concentration of aluminum only at the apex region, while the back-side is dominated by quartz. For that reason we have introduced, in the thermal expansion calculation, a weighting factor proportional to the local temperature along the probe, which allows to consider the bigger role played by the aluminum coating only at the tip-end region. We use $\alpha_{\text{effective}}(z) = \alpha_{\text{quartz}} + \beta \cdot \Delta T(z)$, where β is chosen such that $\alpha_{\text{effective}} = \alpha_{\text{Al}}$ at $z = 0$. For large values of z, ΔT is small and $\alpha_{\text{effective}}$ becomes equal to α_{quartz}. With this correction in the thermal expansion coefficient, we calculate 20 nm probe elongation when the temperature at the tip-end raises 50 degrees Celsius, which is much closer to the typical thermal elongation we measure.

The layered structure, or metal-coated silica, of the NSOM probe can cause the probe end to have a different time response than the rest of the probe (the tapered region). Indeed, numerical analysis of a truncated-cone geometry indicates that a metallic tip would have a very fast response ($\sim \mu\text{s}$). Recently, tip response faster than the 15 ms associated with optical throughput variation has been reported. The metal occupies a larger fraction of the cross-sectional area near the tip than the silica does. It conducts heat much faster, resulting in faster thermal time constants. The aluminum also expands more than the glass with temperature, Fig. 5. We therefore envision a rapid sliding of the
metal layer over (or distortion of) the silica layer near the tip. The slower response of the tip shank, dominated by the silica, accounts for the remainder of the expansion.

Although we quantify the effect for apertured NSOM here, the elongation will also be present in apertureless NSOM experiments. The effects described here are important to any experiment that uses light of varying intensity, such as pulsed lasers, in a scanning probe (AFM, NSOM, etc.) experiment. It is not possible to avoid this probe heating response. Applications of this method include data storage and other applications where probe motion normal to the surface is required.

The NSOM thermo-mechanical method described here does not require any alignment on the microscope head. It does require the light to be coupled into the probe fiber, but this can be accomplished in an one-time light to fiber coupling and subsequent routine use of a butt coupler. This method also does not expose the sample to light, although it is probably not an issue for this particular application. Further, NSOM probes have been found to be fairly robust to wear, with wear of the metal aperture being the primary weak point. Since the probe elongation method described here operates without dependence on the properties of the tip of the probe, it should be very robust to wear. Since tip wear and replacement would be a part of any such system in actual use, our method would provide a suitable choice for manufacturing.

In conclusion, we have demonstrated that probe elongation can be driven by optical power input to an NSOM-like probe. The elongation is independent of the wavelength used and the distance from the sample. The frequency response and properties suggesting its use for delivery of heat or mechanical impulses to a surface are
described. We note that the process quantified here should be taken into account whenever pulsed light is used in NSOM or AFM experiments.

References

