Chiral fermions and chemical potential
Some thoughts

Rajamani Narayanan
Department of Physics
Florida International University

XQCD 2008
NCSU, July 21
Introduction of chemical potential on the lattice for chiral fermions

- Overlap Dirac operator at nonzero chemical potential and random matrix theory; Jacques Bloch, Tilo Wettig; hep-lat/0604020

- Domain-wall and overlap fermions at nonzero quark chemical potential; Jacques Bloch, Tilo Wettig; arXiv:0709.4630 [hep-lat]

- Energy density for chiral lattice fermions with chemical potential; Christof Gattringer, Ludovit Liptak; arXiv:0704.0092 [hep-lat]

- Thermodynamics of the ideal overlap quarks on the lattice; Debasish Banerjee, R.V. Gavai, Sayantan Sharma; arXiv:0803.3925 [hep-lat]

Basic idea in hep-lat/0604020

 Replace U_4 by $e^{i\mu}U_4$ and U_4^\dagger by $e^{-i\mu}U_4^\dagger$ everywhere in the Wilson-Dirac kernel.

- Extend the definition of the sign function.
Massless overlap Dirac operator

Massless overlap Dirac operator in even dimensions is

$$D_o = \frac{1}{2} (1 + \gamma_{d+1} \epsilon[H_w(U, m)])$$

- H_W is the hermitian Wilson Dirac operator.
- U is the background gauge field.
- m is the negative Wilson mass taken to be in the range $[0, 2]$.
- ϵ function on a Hermitian matrix is defined as follows: If
 $$H_w = V \Lambda V^\dagger$$
 where V is the unitary matrix that diagonalizes H_w and $\Lambda_{ij} = \lambda_i \delta_{ij}$ with real λ_i being the eigenvalues of H_w; then
 $$\epsilon(H_w) = V \frac{\Lambda}{|\Lambda|} V^\dagger$$
 where $|\Lambda|_{ij} = |\lambda_i| \delta_{ij}$.
Wilson Dirac operator with a chemical potential

In the presence of a chemical potential, \(\mu \), \(H_w \) is not hermitian. It takes the form

\[
H_w = \begin{pmatrix} B & C_R \\ C_L & -B \end{pmatrix}
\]

\[
[C_L]_{x\alpha i, y\beta j} = \frac{1}{2} \sum_{k=1}^{d-1} \sigma_5^{\alpha \beta} \left[\delta_{y, x+k}(U_k(x))_{ij} - \delta_{x, y+k}(U_k^\dagger(y))_{ij} \right] + \frac{1}{2} \sigma_d^{\alpha \beta} \left[\delta_{y, x+\hat{d}}e^\mu(U_d(x))_{ij} - \delta_{x, y+\hat{d}}e^{-\mu}(U_d^\dagger(y))_{ij} \right]
\]

\[
[C_R]_{x\alpha i, y\beta j} = -\frac{1}{2} \sum_{k=1}^{d-1} \sigma_5^{\dagger \alpha \beta} \left[\delta_{y, x+k}(U_k^\dagger(x))_{ij} - \delta_{x, y+k}(U_k^\dagger(y))_{ij} \right] - \frac{1}{2} \sigma_d^{\dagger \alpha \beta} \left[\delta_{y, x+\hat{d}}e^\mu(U_d(x))_{ij} - \delta_{x, y+\hat{d}}e^{-\mu}(U_d^\dagger(y))_{ij} \right]
\]

\[
[B]_{x\alpha i, y\beta j} = \frac{1}{2} \delta_{\alpha \beta} \sum_{k=1}^{d-1} \left[2\delta_{xy}\delta_{ij} - \delta_{y, x+k}(U_k(x))_{ij} - \delta_{x, y+k}(U_k^\dagger(y))_{ij} \right] + \frac{1}{2} \delta_{\alpha \beta} \left[2\delta_{xy}\delta_{ij} - \delta_{y, x+\hat{d}}e^\mu(U_d(x))_{ij} - \delta_{x, y+\hat{d}}e^{-\mu}(U_d^\dagger(y))_{ij} \right] - m\delta_{x\alpha i, y\beta j}
\]

- \(C_L^{\dagger}(\mu) = C_R(-\mu) \)
- \(B^{\dagger}(\mu) = B(-\mu) \)
The definition of the ϵ function for a hermitian matrix is extended to a general complex matrix as follows: If

$$H_w = V \Lambda V^{-1}$$

where V is a complex matrix that diagonalizes H_w and $\Lambda_{ij} = \lambda_i \delta_{ij}$ with complex λ_i being the eigenvalues of H_w; then

$$\epsilon(H_w) = V \epsilon(\Lambda) V^{-1} = V \left[\lim_{L_s \to \infty} \frac{e^{L_s \Lambda} - 1}{e^{L_s \Lambda} + 1} \right] V^{-1}$$

where $\left[e^{L_s \Lambda} \right]_{ij} = e^{L_s \lambda_j} \delta_{ij}$.

If

$$\lambda_j = R_j + i I_j$$

then

$$\lim_{L_s \to \infty} \frac{e^{L_s \lambda_j} - 1}{e^{L_s \lambda_j} + 1} V^{-1} = \frac{R_j}{|R_j|} = \frac{\text{Re} \lambda_j}{|\text{Re} \lambda_j|}$$
A domain-wall justification

The domain wall action for massless fermions can be written as (H. Neuberger, hep-lat/9710089)

\[
S = - \sum_{s=1}^{2L_s} \bar{\Phi}_s (D \Phi)_s
\]

\[
\begin{pmatrix}
\bar{\Phi}_1 & \bar{\Phi}_2 & \cdots & \bar{\Phi}_{2L_s-1} & \bar{\Phi}_{2L_s}
\end{pmatrix}
= \begin{pmatrix}
\bar{\chi}^R_1 & \bar{\chi}^L_1 & \cdots & \bar{\chi}^R_{L_s-1} & \bar{\chi}^L_{L_s}
\end{pmatrix}
\]

\[
D = \begin{pmatrix}
C_R & B + 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
B + 1 & -C_L & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & -1 & C_R & B + 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & B + 1 & -C_L & -1 & \cdots & 0 & 0 \\
0 & 0 & 0 & -1 & C_R & B + 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & B + 1 & -C_L & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & 0 & \cdots & B + 1 & -C_L \\
\end{pmatrix}
\]

The physical fermion is

\[
\bar{\psi} = \begin{pmatrix}
\bar{\chi}^R_1 & \bar{\chi}^L_{L_s}
\end{pmatrix}
\]
Pseudofermions

The contribution from all the unphysical fermions are subtracted by the pseudofermion action

\[D_{pf} = \begin{pmatrix}
C_R & B + 1 & 0 & 0 & 0 & 0 & \ldots & \ldots & 0 & 1 \\
B + 1 & -C_L & -1 & 0 & 0 & 0 & \ldots & \ldots & 0 & 0 \\
0 & -1 & C_R & B + 1 & 0 & 0 & \ldots & \ldots & 0 & 0 \\
0 & 0 & B + 1 & -C_L & -1 & 0 & \ldots & \ldots & 0 & 0 \\
0 & 0 & 0 & -1 & C_R & B + 1 & \ldots & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & B + 1 & -C_L & \ldots & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 0 & 0 & 0 & 0 & 0 & \ldots & \ldots & B + 1 & -C_L \\
\end{pmatrix} \]
Fermion determinant

\textit{Neuberger, hep-lat/9710089}

\[
\det D = (\det B)^k \det \left[\frac{1 - T^{-k}}{2} - \frac{1 + T^{-k}}{2} \gamma_5 \right]
\]

\[
\det D_{\text{pf}} = (\det B)^k \det \left[- \left(1 + T^{-k} \right) \gamma_5 \right]
\]

\[
T = \begin{pmatrix}
\frac{1}{B+1} & \frac{1}{B+1} C_L \\
C_R \frac{1}{B+1} & C_R \frac{1}{B+1} C_L + B + 1
\end{pmatrix}
\]

\[
\frac{\det D}{\det D_{\text{pf}}} = \det \frac{1}{2} \left[1 + \gamma_5 \tanh \frac{T^{-L_s} - 1}{T^{-L_s} + 1} \right]
\]
Using \textit{tanh} to define ϵ

T is a general complex matrix in the presence of a chemical potential and we are interested in

\[
\frac{T^{-L_s} - 1}{T^{-L_s} + 1}
\]

Let

\[
T = VEV^{-1}
\]

where V is the general complex matrix that diagonalizes T and $E_{ij} = e_i \delta_{ij}$ is the diagonal matrix made up of the complex eigenvalues, e_i, of T.

Then

\[
\frac{T^{-L_s} - 1}{T^{-L_s} + 1} = V \frac{E^{-L_s} - 1}{E^{-L_s} + 1} V^{-1}
\]

\[
\lim_{L_s \to \infty} \frac{e_i^{-L_s} - 1}{e_i^{-L_s} + 1} = \begin{cases}
1 & \text{if } |e_i| < 1 \\
-1 & \text{if } |e_i| > 1
\end{cases}
\]
Overlap Dirac operator with chemical potential

\[\lim_{L_s \to \infty} \frac{T^{-L_s} - 1}{T^{-L_s} + 1} = \epsilon [- \ln T]\]

\[\lim_{L_s \to \infty} \frac{\det D}{\det D_{pf}} = \det D_o\]

\[D_o = \frac{1}{2} [1 + \gamma_5 \epsilon (- \ln T)]\]

\[- \ln T \to H_w\] as the lattice spacing in the \((d + 1)\) direction goes to zero.

The definition of the overlap Dirac operator with a chemical potential in hep-lat/0604020 seems justified.
Isospin chemical potential

\[H_w(\mu) = \begin{pmatrix} B(\mu) & C_R(\mu) \\ C_L(\mu) & -B(\mu) \end{pmatrix} \]

- \[C_L^\dagger(\mu) = C_R(-\mu) \]
- \[B^\dagger(\mu) = B(-\mu) \]

\[H_w^\dagger(\mu) = H_w(-\mu) \]

\[\epsilon \left(H_w(-\mu) \right) = [\epsilon \left(H_w(\mu) \right)]^\dagger \]

\[\text{det } D_o(\mu) = [\text{det } D_o(-\mu)]^* \]
A reminder of the derivation of the overlap Dirac operator

Overlap fermions provides a solution to the problem of putting chiral fermions on the lattice.

Assume there is no chemical potential.

Form two many body operators:

\[\mathcal{H}_- = a^\dagger \gamma_5 a \]
\[\mathcal{H}_+ = a^\dagger H_w a \]

Then

\[\det C_L = \langle b - | b+ \rangle \]
\[\det C_R = \langle t - | t+ \rangle \]

where \(| b\pm \rangle \) are the normalized lowest energy states of \(\mathcal{H}_\pm \) and \(| t\pm \rangle \) are the normalized highest energy states of \(\mathcal{H}_\pm \).

Phases of these states have to be fixed such that

\[\det C_L = \det C_R^{\dagger} \]
The computation

Let

$$V = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

be the unitary matrix that diagonalizes H_w with $\begin{pmatrix} \alpha \\ \gamma \end{pmatrix}$ and $\begin{pmatrix} \beta \\ \delta \end{pmatrix}$ spanning the positive and negative eigenvalues of H_w respectively.

$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ span the positive and negative eigenvalues of γ_5 respectively.

Therefore, $\det C_L = \delta$ and $\det C_R = \alpha$ up to a phase.

Since V is unitary, one can show that

$$\det V = \frac{\det \alpha}{\det \delta^\dagger}$$

Since $\det V \det V^\dagger = 1$, it follows that

$$\det \alpha \det \alpha^\dagger = \det \delta \det \delta^\dagger$$

and therefore $\det C_L \det C_L^\dagger = \det C_R \det C_R^\dagger$ are the same and independent of the phase choice.
Derivation of the overlap Dirac operator

\[\epsilon(H_w)V = \begin{pmatrix} \alpha & -\beta \\ \gamma & -\delta \end{pmatrix} \]

\[\gamma_5\epsilon(H_w)V = \begin{pmatrix} \alpha & -\beta \\ -\gamma & \delta \end{pmatrix} \]

\[D_oV = \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \]

\[\det D_o \frac{\det \alpha}{\det \delta^\dagger} = \det \alpha \det \delta \]

\[\det D_o = \det \delta \det \delta^\dagger \]
Addition of the chemical potential

\[V = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \]

\[\epsilon(H_w)V = \begin{pmatrix} \alpha & -\beta \\ \gamma & -\delta \end{pmatrix} \]

\[\gamma_5\epsilon(H_w)V = \begin{pmatrix} \alpha & -\beta \\ -\gamma & \delta \end{pmatrix} \]

\[D_o V = \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \]

\[\det D_o \det V = \det \alpha \det \delta \]

\[\det D_o = \det V^{-1} \det \alpha \det \delta \]
Remarks

- H_w is not hermitian. \mathcal{H}_+ is not a hermitian many body operator.

- a^\dagger should really be replaced by a^{-1}. It carries the same meaning. a^{-1} is the creation operator and is the inverse of a, the annihilation operator.

- If (a, a^{-1}) obey canonical anticommutation relations, and if $b = V^{-1}a$, then (b, b^{-1}) also obey canonical anticommutation relations.

- $\det C_L \det C_R$ is not real and positive.

- There should be no ambiguity in the definition of $\det C_L \det C_R$.

- Under $V \rightarrow DV$ where D is an arbitrary complex diagonal matrix, $\det V^{-1} \det \alpha \det \delta$ and therefore $\det D_o$ is invariant.

- The propagator

 $$G_o = D_o^{-1} - 1 = \begin{pmatrix} 0 & \beta \delta^{-1} \\ \gamma \alpha^{-1} & 0 \end{pmatrix}$$

 is clearly chiral and is invariant under $V \rightarrow DV$.
Eigenvalues of $S = \gamma_5 \epsilon$

$$\epsilon^2 = 1$$

Let

$$S\psi = s\psi$$

Then

$$\epsilon\psi = s\gamma_5\psi \Rightarrow \psi = s\epsilon\gamma_5\psi \Rightarrow \frac{1}{s}[\gamma_5\psi] = S[\gamma_5\psi]$$

- There is a pairing of eigenvalues of the form, $(s, 1/s)$.
- $s = \pm 1$ are not paired.
- $s = -1$ corresponds to a zero mode of D_o.
- If ϵ is hermitian, S is unitary and all eigenvalues lie on the unit circle.
- In the presence of μ, eigenvalues inside the unit circle have partners outside the unit circle.
\begin{align*}
\det D_o(\mu) \\
\text{Assume we are in the zero topological sector.} \\
\text{When } \mu = 0, \text{ let } s_j = e^{i\phi_j} \text{ with } 0 \leq \phi_j < \pi \text{ be half the eigenvalues of } S. \text{ Then,} \\
\det D_o(0) = \prod_j \cos^2 \frac{\phi_j}{2} \\
\text{When } \mu \neq 0, \text{ let us assume that } |s_j| < 1 \text{ be half the eigenvalues of } S. \text{ Then,} \\
\det D_o(0) = \prod_j \frac{1}{4} \left[2 + s_j + s_j^{-1} \right] \\
\text{Whether } \mu = 0 \text{ or } \mu \neq 0, s_j \text{ close to } -1 \text{ cause a suppression and this is just the role of almost zero modes.} \\
\text{What if all the } s_j \text{ with } |s_j| < 1 \text{ get close to zero? (A possible scenario as } \mu \text{ is increased)} \\
\text{Then, the determinant gets very large (opposite of suppression).} \\
\text{In addition, if the phase of } s_j \text{ gets uniformly distributed on the unit circle, then the determinant will remain large.}
\end{align*}
Phase of $\det D_{O}(\mu)$

- Phase of the fermion determinant results in the sign problem.

- What happens in large N_c QCD with finite number of fermions flavors?

- Can we work in the quenched approximation even with a chemical potential in the large N_c limit?

- The fermion determinant should still be one power of N_c less than the vacuum polarization.

- But the fermion determinant will have a factor of N_c and this implies that the phase of the determinant can be anywhere on the unit circle. If so, phase averaging is a problem.

- What is the phase distribution of the eigenvalues s_j with $|s_j| > 1$?