Revisiting the strong coupling limit of lattice QCD

Philippe de Forcrand
ETH Zürich and CERN

with Michael Fromm (ETH)
Motivation

- 25+ years of analytic predictions:

 80's: Kluberg-Stern et al., Kawamoto-Smit, Damgaard-Kawamoto

 \[T_c(\mu = 0) = \frac{5}{3}, \quad \mu_c(T = 0) = 0.66 \]

 90's: Petersson et al., 1/g2 corrections

 00's: detailed (\(\mu, T\)) phase diagram: Nishida, Kawamoto,...

 08: Ohnishi, Münster & Philipsen,...

 How accurate is mean-field (1/d) approximation?

- Almost no Monte Carlo crosschecks:

 89: Karsch-Mütter \(\rightarrow\) MDP formalism \(\rightarrow\) \(\mu_c(T = 0) \sim 0.63\)

 92: Karsch et al. \(T_c(\mu = 0) \approx 1.40\)

 99: Azcoiti et al., MDP ergodicity ??

 06: PdF-Kim, HMC \(\rightarrow\) hadron spectrum \(\sim 2\%\) of mean-field

Can one trust the details of analytic phase-diagram predictions?
Phase diagram according to Nishida (2004)

Very similar to conjectured phase diagram of $N_f = 2$ QCD
Strong coupling $SU(3)$ with staggered quarks

$$Z = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \exp(-\bar{\psi}(\not{D}(U) + m)\psi), \text{ no plaquette term (} \beta = 0 \text{)}$$

- One KS fermion field (ie. 4 “tastes”): 6 d.o.f. per site
- $\not{D}(U) = \frac{1}{2} \sum_{x,\nu} \eta_\nu(x)(U_\nu(x) - U_\nu^\dagger(x - \hat{\nu}))$, $\eta_\nu(x) = (-)^{x_1 + \ldots + x_{\nu-1}}$
- Chemical potential $\mu \rightarrow \exp(\pm a\mu) U_{\pm4}$
Strong coupling $SU(3)$ with staggered quarks

$$Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\bar{\mathcal{D}}(U) + m)\psi), \text{ no plaquette term (}\beta = 0)$$

- One KS fermion field (ie. 4 "tastes"): 6 d.o.f. per site
- $\mathcal{D}(U) = \frac{1}{2} \sum_{x,v} \eta_v(x)(U_v(x) - U_v^\dagger(x - \hat{v}))$, $\eta_v(x) = (-)^{x_1 + \ldots + x_{v-1}}$
- Chemical potential $\mu \rightarrow \exp(\pm a\mu)U_{\pm4}$

- **Alternative 1:** integrate over fermions
 $$Z = \int \mathcal{D} U \det(\bar{\mathcal{D}}(U) + m) \rightarrow \text{HMC, etc...}$$
Strong coupling $SU(3)$ with staggered quarks

$$Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\bar{\not{D}}(U) + m)\psi), \text{ no plaquette term } (\beta = 0)$$

- One KS fermion field (ie. 4 "tastes"): 6 d.o.f. per site
- $\bar{D}(U) = \frac{1}{2} \sum_{x,\nu} \eta_{\nu}(x)(U_{\nu}(x) - U_{\nu}^+(x - \hat{\nu}))$, $\eta_{\nu}(x) = (-)^{x_1 + \ldots + x_{\nu-1}}$
- Chemical potential $\mu \rightarrow \exp(\pm a\mu)U_{\pm 4}$

- Alternative 1: integrate over fermions
 $$Z = \int \mathcal{D} U \det(\bar{D}(U) + m) \rightarrow \text{HMC, etc...}$$

- Alternative 2: integrate over links
 $$\rightarrow \text{Color singlet degrees of freedom:}$$
 - Monomer (meson $\bar{\psi}\psi$) $M(x) \in \{0, 1, 2, 3\}$
 - Dimer (meson hopping), non-oriented $n_{\nu}(x) \in \{0, 1, 2, 3\}$
 - Baryon hopping, oriented $\bar{B}B_{\nu}(x) \in \{0, 1\} \rightarrow \text{self-avoiding loops } C$
Strong coupling $SU(3)$ with staggered quarks

$$Z = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \exp(-\bar{\psi}(\mathcal{D}(U) + m)\psi), \text{ no plaquette term (}\beta = 0)$$

- One KS fermion field (ie. 4 “tastes”): 6 d.o.f. per site
- $\mathcal{D}(U) = \frac{1}{2} \sum_{x,\nu} \eta_{\nu}(x)(U_{\nu}(x) - U_{\nu}^\dagger(x - \hat{v}))$, $\eta_{\nu}(x) = (-)^{x_1 + \cdots + x_{\nu-1}}$
- Chemical potential $\mu \rightarrow \exp(\pm a\mu)U_{\pm 4}$

- Alternative 1: integrate over fermions
 $$Z = \int \mathcal{D}U \det(\mathcal{D}(U) + m) \rightarrow \text{HMC, etc...}$$

- Alternative 2: integrate over links
 \rightarrow Color singlet degrees of freedom:
 - Monomer (meson $\bar{\psi}\psi$) $M(x) \in \{0, 1, 2, 3\}$
 - Dimer (meson hopping), non-oriented $n_\nu(x) \in \{0, 1, 2, 3\}$
 - Baryon hopping, oriented $\bar{B}B_\nu(x) \in \{0, 1\} \rightarrow$ self-avoiding loops C

$$Z(m,\mu) = \sum_{\{M,n_\nu,C\}} \prod_x \frac{3!}{M(x)!} m^{M(x)} \prod_{x,\nu} \frac{(3 - n_\nu(x))!}{3!n_\nu(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\nu} n_\nu)(x) = 3 \ \forall x \notin \{C\}$
MDP Monte Carlo

\[Z(m, \mu) = \sum_{\{M, n_v, C\}} \prod_x \frac{3!}{M(x)!} m^M(x) \prod_{x,v} \frac{(3 - n_v(x))!}{3! n_v(x)!} \prod_{\text{loops } C} \rho(C)\]

with constraint \((M + \sum_{\pm v} n_v)(x) = 3 \forall x \notin \{C\}\]

3 difficulties:

- **sign** of \(\prod_C \rho(C)\):
 - associate \(\pm\) baryon loops with (1212.. & 2121..) polymer loops
 - weight: \(\pm \cosh \frac{\mu}{T} + 1 \rightarrow\) much milder sign problem

MDP ensemble

\[\text{Karsch & Mütter}\]
$Z(m, \mu) = \sum_{\{M, n_\nu, C\}} \prod_x \frac{3!}{M(x)!} m^{M(x)} \prod_{x, \nu} \frac{(3 - n_\nu(x))!}{3! n_\nu(x)!} \prod_{\text{loops } C} \rho(C)$

with constraint $(M + \sum_{\pm \nu} n_\nu)(x) = 3 \forall x \notin \{C\}$

3 difficulties:

- **sign of $\prod_C \rho(C)$:**
 - associate \pm baryon loops with (1212.. & 2121..) polymer loops
 - weight: $\pm \cosh \frac{\mu}{T} + 1 \rightarrow$ much milder sign problem
 - MDP ensemble
 - Karsch & Mütter

- **changing monomer number difficult:** weight $\sim m^{\sum_x M(x)}$
 - monomer-changing update (Karsch & Mütter) restricted to $m \sim O(1)$
MDP Monte Carlo

\[Z(m,\mu) = \sum_{\{M,n_\nu,C\}} \prod_x \frac{3!}{M(x)!} m^{M(x)} \prod_{x,\nu} \frac{(3-n_\nu(x))!}{3!n_\nu(x)!} \prod_{\text{loops } C} \rho(C) \]

with constraint \((M + \sum_{\pm} n_\nu)(x) = 3 \forall x \not\in \{C\}\)

3 difficulties:

- **sign of \(\prod_C \rho(C)\):**
 - associate \(\pm\) baryon loops with \((1212.. & 2121..)\) polymer loops
 - weight: \(\pm \cosh \frac{\mu}{T} + 1\) → much milder sign problem

 MDP ensemble \(\text{Karsch & Mütter}\)

- **changing monomer number** difficult: weight \(\sim m^{\sum_x M(x)}\)
 - monomer-changing update \(\text{(Karsch & Mütter)}\) restricted to \(m \sim O(1)\)

- **tight-packing constraint** → local update inefficient, esp. as \(m \to 0\)
MDP Monte Carlo

\[
Z(m, \mu) = \sum_{\{M, n_v, C\}} \prod_x \frac{3!}{M(x)!} m^{M(x)} \prod_{x, v} \frac{(3 - n_v(x))!}{3! n_v(x)!} \prod_{\text{loops } C} \rho(C)
\]

with constraint \((M + \sum \pm n_v)(x) = 3 \ \forall x \notin \{C\}\)

3 difficulties:
- **sign of** \(\prod_C \rho(C)\):
 - associate \(\pm\) baryon loops with \((1212.. & 2121..)\) polymer loops
 - weight: \(\pm \cosh \frac{\mu}{T} + 1\) \(\rightarrow\) much milder sign problem
 - MDP ensemble

- **changing monomer number** difficult: weight \(\sim m \sum_x M(x)\)
 - monomer-changing update (Karsch & Mütter) restricted to \(m \sim \mathcal{O}(1)\)

- **tight-packing constraint** \(\rightarrow\) local update inefficient, esp. as \(m \rightarrow 0\)

Solved with **worm algorithm** (Prokof’eev & Svistunov)
Worm algorithm for MDP

Here for chiral limit $m = 0$ (no monomers: $M(x) = 0 \ \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers $M(x), M(y)$
- Choose among neighbours of y by local heatbath and move $M(y)$ there

 heatbath: sampling of 2-point function $\frac{1}{Z} M(x)M(y)\exp(-S)$
- Keep moving “head” y until $y \rightarrow x$, ie. “worm closes” \rightarrow new configuration in Z
Worm algorithm for MDP

Here for chiral limit $m = 0$ (no monomers: $M(x) = 0 \ \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers $M(x), M(y)$
- Choose among neighbours of y by local heatbath and move $M(y)$ there

 heatbath: sampling of 2-point function $\frac{1}{Z_{||}}M(x)M(y)\exp(-S_{||})$

- Keep moving “head” y until $y \rightarrow x$, ie. “worm closes” \rightarrow new configuration in $Z_{||}$

Global change obtained from sequence of local updates

Each local step gives information on 2-point function

Very close to Adams & Chandrasekharan for $U(N)$
Worm algorithm for MDP

Here for chiral limit $m = 0$ (no monomers: $M(x) = 0 \ \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers $M(x), M(y)$
- Choose among neighbours of y by local heatbath and move $M(y)$ there

heatbath: sampling of 2-point function $\frac{1}{Z||} M(x)M(y) \exp(-S||)$

- Keep moving “head” y until $y \to x$, ie. “worm closes” \to new configuration in $Z||$

Local Metropolis, 4³x2 at $\mu_c, m_q = 0.025$

Worm, same parameter set
Consistency check with HMC

Worm–MDP vs. HMC (Forcrand and Kim ’06) \(\beta = 0 \), same volume (\(\mu = T = 0 \))

\(m_{\pi}, \text{HMC} \)
\(\sigma/N_c \)
\(\sigma/N_c, \text{Mean–Field} \)
\(m_{\pi} \)
\(\sigma/N_c, \text{Worm} \)
\(m_{\pi} \)
Consistency check with HMC

Worm-MDP vs. HMC (Forcrand and Kim '06) $\beta = 0$, same volume ($\mu = T = 0$)
Sign problem?

Worst case $m = 0$:

Can reach $\sim 16^3 \times 4 \forall \mu$, ie. adequate
Transition $T = 0, \mu = \mu_c$

Puzzle:
- Mean-field baryon mass is $\approx 3 \Rightarrow$ expect $\mu_c = \frac{1}{3} F_B(T = 0) \approx 1$
- Mean-field estimate $\mu_c \sim 0.55 - 0.66$ much smaller

- Baryon mass ≈ 3 checked by HMC
- $\mu_c \approx 0.63$ checked by Karsch & Mütter for $T = 1/4$ only

Explanation?
- Problem with $m \rightarrow 0$ or $T \rightarrow 0$ extrapolation of MC data?
- Or nuclear attraction $\sim 1/3$ baryon mass!

Check with $m = 0$, $T \approx 0$ worm simulations
Consistency check with Karsch & Mütter

Baryon number density n_B, $8^3 \times 4$, $m_q = 0.1$, Worm vs. Metropolis

Agreement except at $\mu = 0.68 \sim \mu_c$ \leftrightarrow ergodicity of local update
Reducing the quark mass

Baryon number density n_B, $L^3 \times 2$ (4), $m_q = 0.1$, Worm vs. Metropolis

As $m \to 0$, μ_c decreases and transition becomes stronger
Reducing the quark mass

Baryon number density n_B, $L^3 \times 2$ (4), $m_q = 0.025$

As $m \rightarrow 0$, μ_c decreases and transition becomes stronger.
Reducing the quark mass

Baryon number density n_B, $L^3 \times 2 (4)$, $m_q = 0$

As $m \rightarrow 0$, μ_c decreases and transition becomes stronger
Varying the mass at fixed $T = 1/2$

Baryon number density n_B, $10^3 x 2$, varying m_q

From first-order ($m = 0$) to crossover ($m = 0.1$) \Rightarrow critical mass m_c?
Critical mass $m_c(T = 1/2)$?

Histogram n_B, $\mu = \mu_c$, $T = 1/2$, $m = 0$

$m = 0.025$

$m = 0.05$

$m = 0.1$

Critical mass $m_c(T = 1/2) \sim 0.05$

Qualitative agreement, but not quantitative
$m = 0$: compare $\mu_c(T = 1/2, T = 1/4)$ with Nishida (2004)

Qualitative agreement, but not quantitative
\(m = 0 \): compare \(\mu_c(T = 1/2, T = 1/4) \) with Kawamoto (2005)

\[
m = 0: \text{compare } \mu_c(T = 1/2, T = 1/4) \text{ with Kawamoto (2005)}
\]

Take \(T_c = 5/3 \) (mean-field) [MC: 1.40 Karsch]

→ qualitative agreement, but not quantitative
Conclusions

Summary

- For $m = 0$, $\mu_c(T = 1/4) \approx 0.62 (< m_B/3)$ and $\mu_c(T = 1/2) \approx 0.54$
- Critical end-point (not chiral) moves to larger μ as m increases

Outlook

- Improve systematics:
 Multicanonical MC for first-order transition at low T
 Asymmetry γ in Dirac coupling to vary T continuously
 Check mean-field “scaling” $T = \gamma^2/N_t$
 Compare real and imaginary μ
- Determine phase diagram:
 Tricritical point for $m = 0$
 Critical end-point as a function of m
- Extend to 2 KS fields:
 Baryon no longer self-avoiding $\rightarrow B\pi$ scattering etc..
 Isospin μ