Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

Introduction
GW relation and $\mu \neq 0$
Our Results
Summary

Introduction

♦ A fundamental aspect of QCD – Critical Point in $T-\mu_B$ plane;
Introduction

♠ A fundamental aspect of QCD – Critical Point in T-μ_B plane; Based on symmetries and models, Expected QCD Phase Diagram

From Rajagopal-Wilczek Review
Introduction

♠ A fundamental aspect of QCD – Critical Point in $T-\mu_B$ plane; Based on symmetries and models, Expected QCD Phase Diagram

… but could, however, be …

From Rajagopal-Wilczek Review
Introduction

♠ A fundamental aspect of QCD – Critical Point in T-μ_B plane; Based on symmetries and models, Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review
Introduction

♠ A fundamental aspect of QCD – Critical Point in T-μ_B plane; Based on symmetries and models,
Expected QCD Phase Diagram

... but could, however, be ... McLerran-Pisarski 2007

From Rajagopal-Wilczek Review
GW relation and $\mu \neq 0$

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation: $\{\gamma_5, D\} = aD\gamma_5 D$.
GW relation and $\mu \neq 0$

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation: $\{\gamma_5, D\} = a D \gamma_5 D$.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D) \gamma_5$, leave the action $S = \sum \bar{\psi} D \psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D \gamma_5 - \frac{a}{2} D \gamma_5 D - \frac{a}{2} D \gamma_5 D \right]_{xy} \psi_y = 0 \quad (1)$$
GW relation and $\mu \neq 0$

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation: $\{\gamma_5, D\} = aD\gamma_5 D$.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D) \gamma_5$, leave the action $S = \sum \bar{\psi} D \psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D \gamma_5 - \frac{a}{2} D \gamma_5 D - \frac{a}{2} D \gamma_5 D \right]_{xy} \psi_y = 0 \quad (1)$$

♠ Overlap fermions, and Domain Wall fermions in the limit of large fifth dimension satisfy this relation.
Domain Wall Fermions

Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

\[S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x, s)D_{dw}(x, s; x', s')\psi(x', s') , \]

(2)
Proposed by Kaplan ([PLB 1992]), a convenient form for Domain Wall fermion action ([Shamir, NPB, 1993]) is:

\[S_{F} = \sum_{s,s' = 1}^{N_5} \sum_{x,x'} \bar{\psi}(x, s) D_{dw}(x, s; x', s') \psi(x', s'), \] (2)

where \(D_{dw} \) is defined in terms of \(D_{w} \) as

\[D_{dw}(x, s; x', s') = [a_5 D_{w} + 1] \delta_{s,s'} - [P_- \delta_{s,s'-1} + P_+ \delta_{s,s+1'}], \] (3)

with boundary conditions \(P_+ \psi(x, 0) = -am \ P_+ \psi(x, N_5) \) and \(P_- \psi(x, N_5 + 1) = -am \ P_- \psi(x, 1). \)
Domain Wall Fermions

♠ Proposed by Kaplan (*PLB* 1992), a convenient form for Domain Wall fermion action (*Shamir, NPB, 1993*) is:

\[
S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') ,
\]

where \(D_{dw} \) is defined in terms of \(D_w \) as

\[
D_{dw}(x,s;x',s') = [a_5 D_w + 1] \delta_{s,s'} - [P_- \delta_{s,s'-1} + P_+ \delta_{s,s+1'}] ,
\]

with boundary conditions\(P_+ \psi(x,0) = -am \ P_+ \psi(x,N_5) \) and\(P_- \psi(x,N_5+1) = -am \ P_- \psi(x,1) \).

♠ Only light modes attached to the wall(s) are physical. Divide out heavy modes by having the \(D_{dw}(am)/D_{dw}(am = 1) \) as the effective Domain Wall operator in \(\mathbb{Z} \).
As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

\[[(1 + am) - (1 - am)\gamma_5\tanh\left(\frac{N_5}{2} \ln |T|\right)] , \quad (4) \]

with

\[T = (1 + a_5\gamma_5 D_w P_+)^{-1}(1 - a_5\gamma_5 D_w P_-). \]
As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

\[
(1 + am) - (1 - am)\gamma_5 \tanh\left(\frac{N_5}{2} \ln |T|\right) ,
\]

with \(T = (1 + a_5\gamma_5 D_w P_+)^{-1}(1 - a_5\gamma_5 D_w P_-) \).

Taking the limit \(N_5 \to \infty \) for \(a_5 = 1 \), one obtains sign function of \(\ln |T| \), proving that the DWF satisfy the Ginsparg-Wilson relation in this limit.

Taking the limit \(a_5 \to 0 \) such that \(L_5 = a_5 N_5 = \text{constant} \), one can show \(N_5 \ln T \to L_5 \gamma_5 D_{dw} \). Further, for \(L_5 \to \infty \), DWF reduce to the overlap fermions.

We use this form in our numerical work.
Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).
Introducing Chemical Potential

- Ideally, one should construct the conserved charge as a first step.

- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Simpler alternative: $D_w \rightarrow D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).
Introducing Chemical Potential

- Ideally, one should construct the conserved charge as a first step.

- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Simpler alternative: $D_w \rightarrow D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).

- Note $\gamma_5 D_w(a\mu)$ is no longer Hermitian, requiring an extension of the sign function. B & W proposal: For complex $\lambda = (x + iy)$, $\text{sign}(\lambda) = \text{sign} (x)$.
Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative: \(D_w \rightarrow D_w(a\mu) \) by \(K(a\mu) = \exp(a\mu) \) and \(L(a\mu) = \exp(-a\mu) \) in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).

• Note \(\gamma_5 D_w(a\mu) \) is no longer Hermitian, requiring an extension of the sign function. B & W proposal: For complex \(\lambda = (x + iy) \), \(\text{sign}(\lambda) = \text{sign}(x) \).

• Gattringer-Liptak, PRD 2007, showed for \(M = 1 \) numerically that no \(\mu^2 \) divergences exist for the free case (\(U = 1 \)).
We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero μ. Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2} D(0)\gamma_5 D(a\mu) - \frac{a}{2} D(a\mu)\gamma_5 D(0) \right]_{xy} \psi_y ,$$

under Lüscher’s chiral transformations.

(5)
• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that \(K(a\mu) \cdot L(a\mu) = 1 \) for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero \(\mu \). Note that

\[
\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2} D(0)\gamma_5 D(a\mu) - \frac{a}{2} D(a\mu)\gamma_5 D(0) \right] \psi_y ,
\]

under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

\[
\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a \ D(a\mu)\gamma_5 D(a\mu) = 0 ,
\]

which is not sufficient to make \(\delta S = 0 \).
• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero μ. Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - \frac{a}{2} D(0) \gamma_5 D(a\mu) - \frac{a}{2} D(a\mu) \gamma_5 D(0) \right] \psi_y,$$

(5)

under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

$$\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - a D(a\mu) \gamma_5 D(a\mu) = 0,$$

(6)

which is not sufficient to make $\delta S = 0$. True for both Overlap and Domain Wall fermions and any K, L.

Extreme QCD 2008, North Carolina State University, Raleigh, USA, July 21, 2008
Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of μ^2-divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.
Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.

- Analytically, we prove the absence of μ^2-divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.

- Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.
Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of μ^2-divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from $\ln Z = \ln |\det D_{ov}|$ by taking T and V, or equivalently a_4 and a, partial derivatives.

• Dirac operator is diagonal in momentum space. Use its eigenvalues to compute Z:
 \[
 \lambda_{\pm} = 1 - \left[\text{sgn} \left(\sqrt{h^2 + h_5^2} \right) h_5 \pm i\sqrt{h^2} \right] / \sqrt{h^2 + h_5^2}, \quad \text{with}
 \]
 \[
 h_i = -\sin a p_i, \quad i = 1, 2 \text{ and } 3, \quad h_4 = -a \sin(a_4 p_4) / a_4 \quad \text{and}
 \]
 \[
 h_5 = M - \sum_{i=1}^{3} \left[1 - \cos(a p_i) \right] - a [1 - \cos(a_4 p_4)] / a_4.
 \]
• Easy to show that $\epsilon = 3P$ for all a and a_4.
• Easy to show that $\epsilon = 3P$ for all a and a_4.

• I will show results for ϵ/ϵ_{SB} which is also P/P_{SB}.
• Easy to show that $\epsilon = 3P$ for all a and a_4.

• I will show results for ϵ/ϵ_{SB} which is also P/P_{SB}.

• Hiding p_i-dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^4 = \frac{2}{N^3 N_T} \sum_{p_i, n} F(\omega_n) = \frac{2}{N^3 N_T} \sum_{p_i, n} \left[(g + \cos \omega_n) + \sqrt{d + 2g \cos \omega_n} \right]$$

$$\times \left[\frac{(1 - \cos \omega_n)}{d + 2g \cos \omega_n} + \frac{\sin^2 \omega_n (g + \cos \omega_n)}{(d + 2g \cos \omega_n)(f + \sin^2 \omega_n)} \right]$$

(7)

where ω_n are the Matsubara frequencies.
• Easy to show that $\epsilon = 3P$ for all a and a_4.

• I will show results for ϵ / ϵ_{SB} which is also P / P_{SB}.

• Hiding p_i-dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^4 = \frac{2}{N^3 N_T} \sum_{p_i, n} F(\omega_n)$$

$$= \frac{2}{N^3 N_T} \sum_{p_i, n} \left[(g + \cos \omega_n) + \sqrt{d + 2g \cos \omega_n} \right]$$

$$\times \left[\frac{(1 - \cos \omega_n)}{d + 2g \cos \omega_n} + \frac{\sin^2 \omega_n (g + \cos \omega_n)}{(d + 2g \cos \omega_n)(f + \sin^2 \omega_n)} \right]$$

(7)

where ω_n are the Matsubara frequencies.

• Can be evaluated using the standard contour technique or numerically.
Analytic Evaluation: \(\mu = 0. \)
Analytic Evaluation : $\mu = 0$.

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.
Analytic Evaluation: \(\mu = 0 \).

- Poles at \(\omega = \pm i \sinh^{-1} \sqrt{f} \) and Poles (branch points) at \(\pm i \cosh^{-1} \frac{d}{2g} \).

- Evaluating integrals, \(\epsilon a^4 = 4N^{-3} \sum_{p_j} \left[\sqrt{f/1+f} \right] [\exp(N_T \sinh^{-1} \sqrt{f}) + 1]^{-1} + \epsilon_3 + \epsilon_4 \), where \(f = \sum_i \sin^2(\alpha p_i) \).
Analytic Evaluation: $\mu = 0$.

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.

- Evaluating integrals, $\epsilon a^4 = 4N^{-3} \sum_{p_j} \left[\sqrt{f/1 + f} \right] \left[\exp(N_T \sinh^{-1} \sqrt{f}) + 1 \right]^{-1} + \epsilon_3 + \epsilon_4$, where $f = \sum_i \sin^2(a p_i)$.

- Can be seen to go to ϵ_{SB} as $a \to 0$ for all M.

Extreme QCD 2008, North Carolina State University, Raleigh, USA, July 21, 2008
More Details: \(T = 0, \mu \neq 0 \)

- Defining \(K(\mu) + L(\mu) = 2R \cosh \theta \) and \(K(\mu) - L(\mu) = 2R \sinh \theta \), the same treatment as above goes through by substituting \(\sin \omega_n \rightarrow R \sin(\omega_n - i\theta) \) and \(\cos \omega_n \rightarrow R \cos(\omega_n - i\theta) \).
More Details: \(T = 0, \mu \neq 0 \)

- Defining \(K(\mu) + L(\mu) = 2R \cosh \theta \) and \(K(\mu) - L(\mu) = 2R \sinh \theta \), the same treatment as above goes through by substituting \(\sin \omega_n \to R \sin(\omega_n - i\theta) \) and \(\cos \omega_n \to R \cos(\omega_n - i\theta) \).

- Energy density is also functionally the same with \(F(1, \omega_n) \to F(R, \omega_n - i\theta) \).

- Additional observable, number density: Has the same pole structure so similar computation.
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be:

\[
\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta (K(a\mu) - L(a\mu) - 2\sqrt{f}) \\
+ \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].
\]
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be:
 \[
 \epsilon a^4 = \left(\pi N^3\right)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right)
 + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].
 \]

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.

- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ.
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be:

 $$\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta (K(a\mu) - L(a\mu) - 2\sqrt{f})
 + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].$$

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.

- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ.

- K and L should be such that $K(a\mu) - L(a\mu) = 2a\mu + O(a^3)$ with $K(0) = 1 = L(0)$.
Divergence Cancellation at $T = 0, \mu \neq 0$

- Doing the contour integral, the energy density turns out to be:
 \[
 \epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res} \ F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) \\
 + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].
 \]

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.

- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ.

- K and L should be such that $K(a\mu) - L(a\mu) = 2a \mu + \mathcal{O}(a^3)$ with $K(0) = 1 = L(0)$.

- Generalization to $T \neq 0$ and $\mu \neq 0$ case straightforward. One merely needs two different contours depending on pole locations and value of θ.
Numerical Evaluation

♣ Zero temperature contribution: as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.
♣ Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T.
Numerical Evaluation

Zero temperature contribution: as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.

Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T.

![Graph showing the relationship between e/e_{SB} and N_T for different values of ζ.]
Numerical Evaluation

♣ Zero temperature contribution: as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.
♣ Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T.

![Graphs showing the relationship between $\varepsilon/\varepsilon_{SB}$ and N_T for different values of ζ and M.]
Approach to SB-Limit

\[\frac{e}{e_{SB}} \]

\[\frac{1}{N_T^2} \]

\[\zeta = 5 \]
Approach to SB-Limit

\[\frac{\epsilon}{\epsilon_{SB}} = 5 \]

\[\frac{p}{p_{SB}} \]

1-link actions
Wilson
staggered
overlap
O(1/N^2_t)

Banerjee, Gavai & Sharma, arXiv:0803.3925
Hegde, Karsch, Laermann & Shcheredin, arXiv:0801.4883

Extreme QCD 2008, North Carolina State University, Raleigh, USA, July 21, 2008

R. V. Gavai
Results for $M = 1$ agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.
Approach to SB-Limit

\[\frac{\varepsilon}{\varepsilon_{SB}} = \frac{1}{N_T^2} \]

\[\zeta = 5 \]

\[p/p_{SB} = (\pi/N_T)^2 \]

\[N_T \]

\[1\text{-link actions} \]

Wilson
staggered
overlap
\(O(1/N_T^2) \)

Banerjee, Gavai & Sharma, arXiv:0803.3925
Hegde, Karsch, Laermann & Shcheredin, arXiv:0801.4883

\(\heartsuit \) Results for \(M = 1 \) agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.

\(\heartsuit \) \(1.50 \leq M \leq 1.60 \) seems optimal, with 2-3 % deviations already for \(N_T = 12 \).
Domain Wall Fermions ($a_5 \to 0$)

Rajiv V. Gavai and Sayantan Sharma, in preparation.
-domain Wall Fermions $(a_5 \to 0)$

$\frac{\varepsilon}{\varepsilon_{SB}}$ vs $\frac{1}{N_T^2}$ for $M = 1.55, \zeta = 4$

$\frac{\varepsilon}{\varepsilon_{SB}}$ vs $\frac{1}{N_T^2}$ for $L_5 = 14, \zeta = 4$

Rajiv V. Gavai and Sayantan Sharma, in preparation.

◊ $L_5 \geq 14$ seems to be large enough to get L_5-independent results.
\[\text{Domain Wall Fermions } (a_5 \rightarrow 0) \]

\[\frac{\varepsilon}{\varepsilon_{SB}} \text{ vs } \frac{1}{N_T^2} \]

\[L_5 \geq 14 \text{ seems to be large enough to get } L_5\text{-independent results.} \]

\[\text{Optimal range again seems to be } 1.50 \leq M \leq 1.60. \]

Rajiv V. Gavai and Sayantan Sharma, in preparation.
Domain Wall Fermions \((a_5 = 1)\)

Rajiv V. Gavai and Sayantan Sharma, in preparation.
Domain Wall Fermions \((\alpha_5 = 1) \)

\[\frac{e}{e_{SB}} \text{ vs } N_T \]

\[\frac{BS}{e_{SB}} \text{ vs } \frac{1}{N_T^2} \]

Rajiv V. Gavai and Sayantan Sharma, in preparation.

◊ \(\zeta \geq 4 \) seems to be large enough to get thermodynamic limit.
◊ Optimal range now seems to be \(1.40 \leq M \leq 1.50 \); \(M = 1.9 \) used by Chen et al. (PRD 2001) in their study of order parameters of FTQCD.
Numerical Evaluation

Two Observables: \(\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T) \) and Susceptibility,
\(\sim \partial^2 \ln Z / \partial \mu^2 \).
Numerical Evaluation

◊ Two Observables: \(\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T) \) and Susceptibility,
\[
\sim \frac{\partial^2 \ln Z}{\partial \mu^2}.
\]

◊ For odd \(N_T \) and large enough \(\mu \) the sign function is undefined as an eigenvalue becomes pure imaginary.
Numerical Evaluation

♦ Two Observables: $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln Z / \partial \mu^2$.

♦ For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.

♦ Former computed for two $r = \mu/T = 0.5$ and 0.8 while latter for $\mu = 0$.

Extreme QCD 2008, North Carolina State University, Raleigh, USA, July 21, 2008

R. V. Gavai

Top
Numerical Evaluation

◊ Two Observables: \(\Delta \epsilon(\mu, T) = \epsilon(\mu, T) - \epsilon(0, T) \) and Susceptibility, \(\sim \partial^2 \ln Z / \partial \mu^2 \).

◊ For odd \(N_T \) and large enough \(\mu \) the sign function is undefined as an eigenvalue becomes pure imaginary.

◊ Former computed for two \(r = \mu / T = 0.5 \) and 0.8 while latter for \(\mu = 0 \)
Susceptibility too behaves the same way as the energy density.
Susceptibility too behaves the same way as the energy density.

Again $1.50 \leq M \leq 1.60$ seems optimal, with 2-3 % deviations already for $N_T = 12$.
Domain Wall Fermions ($a_5 = 1$)

♡ Again Susceptibility behaves the same way as the energy density.
Domain Wall Fermions \((a_5 = 1)\)

♥ Again Susceptibility behaves the same way as the energy density.

♥ Again \(1.40 \leq M \leq 1.50\) seems optimal, with small deviations already \(N_T = 12\).
Summary

- Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ–T plane.

- Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.
Summary

- Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ–T plane.

- Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.

- However, any μ^2-divergence in the continuum limit is avoided for it and an associated general class of functions $K(\mu)$ and $L(\mu)$ with $K(\mu) \cdot L(\mu) = 1$.

- For the choice of $1.5 \leq M \leq 1.6$ ($1.4 \leq M \leq 1.5$), both the energy density and the quark number susceptibility at $\mu = 0$ exhibited the smallest deviations from the ideal gas limit for $N_T \geq 12$ for Overlap (Domain Wall) Fermions.
Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.

- μ-dependent mass for even massless quarks.
Consequences

• Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.

• μ-dependent mass for even massless quarks.

• Only smooth chiral condensates: No (clear) chiral transition for any (large) μ possible. How small a, or large N_T may suffice?

• All coefficients of a Taylor expansion in μ do have the chiral invariance but the series will be smooth and should always converge.
What if . . .

♠ the chiral transformations were \(\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi \) and
\(\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5 \) ?
What if . . .

♠ the chiral transformations were $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5$? $\delta S = 0$ then clearly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
What if . . .

♠ the chiral transformations were $\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi$ and $\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5$? $\delta S = 0$ then clearly.

- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

- Symmetry transformations should not depend on “external” parameter μ. Chemical potential is introduced for charges N_i with $[H, N_i] = 0$. At least the symmetry should not change as μ does.
What if . . .

♠ the chiral transformations were \(\delta \psi = \alpha \gamma_5 (1 - \frac{a}{2} D(a\mu)) \psi \) and \(\delta \bar{\psi} = \alpha \bar{\psi} (1 - \frac{a}{2} D(a\mu)) \gamma_5 \)? \(\delta S = 0 \) then clearly.

- Not allowed since \(\gamma_5 D(a\mu) \) is not Hermitian.

- Symmetry transformations should not depend on “external” parameter \(\mu \).
 Chemical potential is introduced for charges \(N_i \) with \([H, N_i] = 0\). At least the symmetry should not change as \(\mu \) does.

- Moreover, symmetry groups different at each \(\mu \). Recall we wish to investigate \(\langle \bar{\psi} \psi \rangle(a\mu) \) to explore if chiral symmetry is restored.

- The symmetry group remains same at each \(T \) with \(\mu = 0 \)
 \(\Rightarrow \langle \bar{\psi} \psi \rangle(\mu = 0, T) \) is an order parameter for the chiral transition.