(Non)-perturbative properties of high-T QCD

Frithjof Karsch, Brookhaven National Laboratory & Bielefeld University

- Introduction:
 - thermal scales in QCD: T, gT, g^2T, ...

- Heavy quark free energies
 - screening and running couplings

- Bulk thermodynamics
 - the equation of state: QCD and SU(3)

- Hadronic fluctuations
 - quark number and charge fluctuations

- Conclusions
Introduction: sQGP

- matter created at RHIC is a dense, strongly interacting system
- Does the coupling at finite temperature become large?
- Are exotic bound states in the QGP responsible for large interaction cross sections?
- Is the QGP a liquid?
- Can the QGP be described in terms of a conformal field theory?

overview on perturbative and non-perturbative features of the QGP
Thermal scales in QCD

- **the hard scale:** \(p \sim T \)
 thermal modes, bulk thermodynamics, eg. pressure
 \[
 \frac{p}{T^4} = a_{SB} f_p(g(T))
 \]

- **the soft scale:** \(p \sim gT \)
 static color-electric modes, eg. Debye screening
 \[
 \frac{m_D(T)}{g(T)T} = \sqrt{\frac{N_c}{3} + \frac{n_f}{6} + \frac{n_f}{2\pi^2} \left(\frac{\mu_q}{T} \right)^2} \cdot f_E(g(T))
 \]

- **the ultra-soft scale:** \(p \sim g^2 T \)
 static color-magnetic modes, eg. spatial string tension
 \[
 \frac{\sqrt{\sigma_s}}{g^2(T)T} = c_M f_M(g(T))
 \]
Non-thermal scales in thermal QCD

- even harder scales: $p \gg T$, $r^{-1} \gg T$, $M \gg T$

 short distance physics, eg. quarkonium

 $g^2(r, T')$

- quantitative questions, eg.

 When does T become the dominant scale?
 (i.e. controls the running of g^2)
Hierachy of scale?

Perturbation theory provides a hierachy of length scales

\[T \gg gT \gg g^2T \ldots \Rightarrow \text{guiding principle for effective theories, resummation, dimensional reduction...} \]

These scales are not well separated close to \(T_c \)!!
Hierachy of scale?

- Perturbation theory provides a hierarchy of length scales

\[T \gg gT \gg g^2T \ldots \Rightarrow \text{guiding principle for effective theories, resummation, dimensional reduction...} \]

These scales are not well separated close to \(T_c \) !

- Early lattice results show that \(g^2(T) > 1 \) even at \(T \sim 5T_c \)

G. Boyd et al, NP B469 (1996) 419: SU(3) thermodynamics..

...one has to conclude that the temperature dependent running coupling has to be large, \(g^2(T) \sim 2 \) even at \(T \sim 5T_c \)

- the Debye screening mass is large close to \(T_c \)

- the spatial string tension does not vanish above \(T_c \)

\[\sqrt{\sigma_s} \neq 0 \Rightarrow \text{the QGP is “non-perturbative” up to very high } T \]
Screening of heavy quark free energies
– remnant of confinement above T_c –

singlet free energy
(in Coulomb gauge)

$T \approx T_c$: screening for $r \gtrsim 0.5 \text{fm}$

$F_1(r, T) \sim \frac{\alpha(T)}{r} e^{-\mu(T)r} + \text{const.}$

$F_1(r, T)$ follows linear rise of $V_{\bar{q}q}(r, T = 0) = -\frac{4\alpha(r, T = 0)}{3r} + \sigma r$

for $T \lesssim 1.5T_c, r \lesssim 0.3 \text{ fm}$

F. Karsch, xQCD, July 2008 – p. 6/32
Non-perturbative Debye screening

- leading order perturbation theory: \(m_D = g_D(T)T \sqrt{1 + \frac{n_f}{6}} \)

- \(T_c < T \lesssim 10T_c \): non-perturbative effects are well represented by an ”A-factor”: \(m_D \equiv Ag_D(T)T, \ A \simeq 1.5 \)

- perturbative limit is reached very slowly (logarithms at work!!)

\[m_D/T = Ag(T) \]
\[A = 1.42(2) \]
Non-perturbative Debye screening

- Leading order perturbation theory: \(m_D = g_D(T)T \sqrt{1 + \frac{n_f}{6}} \)

- \(T_c < T \lesssim 10T_c \): non-perturbative effects are well represented by an "A-factor": \(m_D \equiv A g_D(T)T, \; A \sim 1.5 \)

- Perturbative limit is reached very slowly (logarithms at work!!)

\[g_D^2(T_c) \approx 4, \; g_D^2(4T_c) \approx 2 \]
Non-perturbative Debye screening

μ_q-dependence

leading order perturbation theory:

$$m_D = g(T)T \sqrt{1 + \frac{n_f}{6} + \frac{n_f}{2\pi^2} \left(\frac{\mu_q}{T}\right)^2}$$

Taylor expansion, 2-flavor QCD:

$$m_D(T) = m_0(T) + m_2(T) \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}(\mu_q^4)$$

$$\frac{m_2}{m_0} = \frac{3}{8\pi^2}:$$ agrees with perturbation theory for $T \gtrsim 1.5T_c$

Non-perturbative Debye screening

μ_q-dependence

- Leading order perturbation theory:
 \[
 m_D = g(T)T \sqrt{1 + \frac{n_f}{6} + \frac{n_f}{2\pi^2} \left(\frac{\mu_q}{T} \right)^2}
 \]

- Taylor expansion, 2-flavor QCD:
 \[
 m_D(T) = m_0(T) + m_2(T) \left(\frac{\mu_q}{T} \right)^2 + \mathcal{O}(\mu_q^4)
 \]

\[
\frac{m_2}{m_0} = \frac{3}{8\pi^2}:	ext{ agrees with perturbation theory for } T \gtrsim 1.5T_c
\]

non-perturbative effects are in the glue quark sector
"perturbative" above $T \gtrsim 1.5T_c$?

The spatial string tension
Does dimensional reduction work with light quarks?

Non-perturbative, vanishes in high-T perturbation theory:

\[\sqrt{\sigma_s} = - \lim_{R_x, R_y \to \infty} \ln \frac{W(R_x, R_y)}{R_x R_y} \]

\[\frac{\sqrt{\sigma_s}}{g_\sigma^2(T)T} = c_\sigma , \quad c_\sigma \equiv c_3 , \quad g_E^2 \equiv g_\sigma^2 T \]

\(c_3 \): 3-d SU(3), LGT
\(g_\sigma^2 \): 2-loop dim. red. pert. th.

4-d SU(3), LGT data:

3-d SU(3), dimensional reduction:
M. Laine, Y. Schröder, JHEP 0503 (2005) 067
The spatial string tension
Does dimensional reduction work with light quarks?

Non-perturbative, vanishes in high-T perturbation theory:

\[\sqrt{\sigma_s} = - \lim_{R_x, R_y \to \infty} \ln \frac{W(R_x, R_y)}{R_x R_y} \]

\[\frac{\sqrt{\sigma_s}}{g^2(T)T} = c_\sigma , \quad c_\sigma \equiv c_3, \quad g_E^2 \equiv g_\sigma^2 T \]

\(c_3 \): 3-d SU(3), LGT
\(g_\sigma^2 \): 2-loop dim. red. pert. th.

\[g_\sigma^2(T_c) \simeq 3.7 , \quad g_\sigma^2(5T_c) \simeq 2 \]

dimensional reduction works for \(T \gtrsim 2T_c \)

- \(c_M \) (almost) flavor independent
- \(g_\sigma^2(T) \) shows 2-loop running

\[c_\sigma = 0.553(1) [\text{SU}(3)] \]
\[c_\sigma = 0.54(1) [\text{QCD}] \]

M. Cheng et al (RBC-Bielefeld), arXiv:0806.3264

F. Karsch, xQCD, July 2008 – p. 9/32
Screening of heavy quark free energies
– remnant of confinement above T_c –

- singlet free energy
 (in Coulomb gauge)

- $T \simeq T_c$: screening for $r \gtrsim 0.5\text{fm}$

$$F_1(r, T) \sim \frac{\alpha(T)}{r} e^{-\mu(T)r} + \text{const.}$$

- $F_1(r, T)$ follows linear rise of $V_{\bar{q}q}(r, T = 0) = -\frac{4\alpha(r, T = 0)}{3r} + \sigma r$
 for $T \lesssim 1.5T_c$, $r \lesssim 0.3\text{ fm}$
Singlet free energy and asymptotic freedom

Singlet free energy defines a running coupling:

$$\alpha_{\text{eff}} = \frac{3r^2}{4} \frac{dF_1(r, T)}{dr}$$

(in Coulomb gauge)
Singlet free energy and asymptotic freedom

\[\alpha_{\text{eff}} = \frac{3r^2}{4} \frac{dF_1(r, T)}{dr} \]
(in Coulomb gauge)

large distance: constant Coulomb term (string model)
short distance: running coupling \(\alpha(r) \) from \(T = 0 \), 3-loop

short distance physics \(\Leftrightarrow \) vacuum physics

T-dependence starts in non-perturbative regime for \(T \lesssim 3T_c \)
Singlet free energy and asymptotic freedom

Singlet free energy defines a running coupling:

\[\alpha_{\text{eff}} = 3r^2 \frac{dF_1(r, T)}{4 dr} \]

(in Coulomb gauge)

large distance: constant Coulomb term (string model)

short distance: running coupling \(\alpha(r) \) from \(T = 0 \), 3-loop

short distance physics \(\Leftrightarrow \) vacuum physics

T-dependence starts in non-perturbative regime for \(T < \frac{3}{3} T_c \)

\[\alpha_{qq}(r, T) \]

rise due to confinement \(\alpha_{\text{eff}} \sim \sigma r^2 \)
two prominent features of EoS that characterize the non-perturbative structure of QCD at high temperature

- strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \lesssim 3T_c$
- deviations from Stefan-Boltzmann limit persist even at high T
QCD equation of state

- two prominent features of EoS that characterize the non-perturbative structure of QCD at high temperature
 - strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \lesssim 3T_c$
 - deviations from Stefan-Boltzmann limit persist even at high T

- structure of EoS is 'universal', i.e. shows little quark mass dependence in ϵ/ϵ_{SB} vs. T/T_c
- quark content changes only 'details'
SU(3) Equation of State
pressure: LGT vs. HTL

High T part of the pressure calculated on the lattice is in good agreement with HTL-resummed perturbation theory for $T \gtrsim 3T_c$

No need for AdS/QCD to explain 'pressure gap'

HTL: J.P. Blaizot,
E. Iancu, A. Rebhan,
PL B470 (99) 181

F. Karsch, xQCD, July 2008 – p. 13/32
The pressure revisited

- $T \gtrsim (2-3)T_c$: deviations from ideal gas understood in terms of HTL-resummed perturbation theory
- $T \lesssim 2T_c$: strong deviations from ideal gas
- deviations from p_{SB} almost flavor independent

(2+1)-flavor QCD: ...towards the cont. limit ($N_\tau = 8$) with light quarks ($m_\pi \simeq 220$ MeV)

- non-conformal:
 $[(\epsilon - 3p)/T^4]_{max} \simeq (6 - 7)$ at $T_{max} \simeq 200$ MeV (\sim softest point of EoS)

- some cut-off effects in the peak region; p4 and asqtad agree

- $T \gtrsim 300$ MeV: good agreement between $N_\tau = 6$ and 8 results

- non-perturbative:
 $(\epsilon - 3p)/T^4 \sim A/T^2 + B/T^4$
 for $1.5T_c \lesssim T \lesssim 4T_c$
EoS: low T regime

LGT vs resonance gas

approach to physical quark masses:

$m_q = 0.1m_s \rightarrow m_q = 0.05m_s$

($m_\pi \simeq 220$ MeV $\rightarrow 150$ MeV)
EoS: low T regime

LGT vs resonance gas

- Approach to physical quark masses:
 - $m_q = 0.1 m_s \rightarrow m_q = 0.05 m_s$
 - ($m_\pi \simeq 220$ MeV \rightarrow 150 MeV)

 $\rightarrow O(5\text{MeV})$ shift of T-scale

- Good agreement with HRG model in the transition region;
 still need to control cut-off effects
Pressure, Energy and Entropy

\(p/T^4 \) from integration over \((\epsilon - 3p)/T^5\);
\(p(T_0) = 0 \) at \(T_0 = 0 \) MeV
(exponential extrapolation);

systematic error on \(3p/T^4 \) \(\approx 0.33 \)

good scaling behavior; good agreement between different discretization schemes
Pressure, Energy and Entropy

- \(\frac{p}{T^4} \) from integration over \((\epsilon - 3p)/T^5 \);
- \(p(T_0) = 0 \) at \(T_0 = 0 \) MeV
 (exponential extrapolation);
- systematic error on \(\frac{3p}{T^4} \approx 0.33 \)
- good scaling behavior; good agreement between different discretization schemes

\begin{align*}
\text{p4: } N_t = 6 \\
\text{asqtad: } N_t = 8
\end{align*}
Hadronic fluctuations at $\mu > 0$ from Taylor expansion coefficients at $\mu = 0$

$n_f = 2, \ m_\pi \simeq 770$ MeV: S. Ejiri, FK, K.Redlich, PLB633 (2006) 275

$n_f = 2 + 1, \ m_\pi \simeq 220$ MeV: RBC-Bielefeld, preliminary

- Taylor expansion of bulk thermodynamics in terms of $\mu_{u,d,s}$

\[
\frac{p}{T^4} \equiv \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) \\
= \sum_{i,j,k} c_{i,j,k} \left(\frac{\mu_u}{T} \right)^i \left(\frac{\mu_u}{T} \right)^j \left(\frac{\mu_s}{T} \right)^k
\]

- Expansion coefficients evaluated at $\mu_{u,d,s} = 0$ are related to fluctuations of B, S, Q at $\mu_{B,S,Q} = 0$:

\uparrow baryon number, strangeness, charge fluctuations

event-by-event fluctuations at RHIC and LHC
Hadronic fluctuations at \(\mu > 0 \) from
Taylor expansion coefficients at \(\mu = 0 \)

\[n_f = 2, \ m_\pi \simeq 770 \text{ MeV}: \text{S. Ejiri, FK, K.Redlich, PLB633 (2006) 275} \]
\[n_f = 2 + 1, \ m_\pi \simeq 220 \text{ MeV}: \text{RBC-Bielefeld, preliminary} \]

- higher derivatives \(\Rightarrow \) higher moments
- mixed derivatives \(\Rightarrow \) correlations

\[
2c_2^x = \frac{\partial^2 p/T^4}{\partial (\mu_x/T)^2} = \frac{1}{VT^3} \langle (\delta N_x)^2 \rangle_{\mu=0} = \frac{1}{VT^3} \langle N_x^2 \rangle_{\mu=0}
\]

\[
24c_4^x = \frac{\partial^4 p/T^4}{\partial (\mu_x/T)^4} = \frac{1}{VT^3} \langle (\delta N_x)^4 \rangle - 3 \langle (\delta N_x)^2 \rangle^2 \rangle_{\mu=0} = \frac{1}{VT^3} \langle N_x^4 \rangle - 3 \langle N_x^2 \rangle^2 \rangle_{\mu=0}
\]

\[
4c_{22}^{xy} = \frac{\partial^4 p/T^4}{\partial (\mu_x/T)^2 \partial (\mu_y/T)^2} = \frac{1}{VT^3} \left[\langle N_x^2 N_y^2 \rangle - 2 \langle N_x N_y \rangle^2 - \langle N_x^2 \rangle \langle N_y^2 \rangle \right]_{\mu=0}
\]

with \(x = q, s \)
• Results for expansion coefficients $c_{i,j,k}^{u,d,s}$

Cut-off dependance:

- Small cut-off effects in the transition region (similar to p, e-3p, ...)

Mass dependance:

- T_c decreases with decreasing mass
- Fluctuations increase with decreasing mass

red: RBC-Bielefeld, preliminary
Baryon number fluctuations ($\mu_B = 0$)

\[2c_2^B = \langle B^2 \rangle \]

- $n_f=2+1$, $m_{\pi}=220$ MeV
- $n_f=2$, $m_{\pi}=770$ MeV

\[24c_4^B = \langle B^4 \rangle - 3 \langle B^2 \rangle^2 \]

- $n_f=2+1$, $m_{\pi}=220$ MeV
- $n_f=2$, $m_{\pi}=770$ MeV

- filled: $nt=4$
- open: $nt=6$

- red: RBC-Bielefeld, preliminary

- fluctuations increase with decreasing mass
- fluctuations increase over the resonance gas value
Quark number in Boltzmann approximation

baryonic sector of pressure in a hadron resonance gas;

\[m_B \gg T \Rightarrow \text{Boltzmann approximation: } p_B/T^4 = \sum_{m \leq m_{\text{max}}} p_m/T^4 \]

with \(p_m/T^4 = F(T, m, V) \cosh(B\mu_B/T) \)

\[\chi^B_2 \equiv \frac{\partial^2 p_m/T^4}{\partial(\mu_B/T)^2} = B^2 F(T, m, V) \cosh(B\mu_B/T) \]

\[\chi^B_4 \equiv \frac{\partial^4 p_m/T^4}{\partial(\mu_B/T)^4} = B^4 F(T, m, V) \cosh(B\mu_B/T) \]

ratio of fourth (\(\chi^B_4 \)) and second (\(\chi^B_2 \)) cumulant of quark number fluctuation gives "unit of charge" carried by the particle with mass "m":

\[m \gg T \Rightarrow R^B_{4,2} \equiv \frac{\chi^B_4}{\chi^B_2} = B^2 \]
Charge fluctuations in Boltzmann approximation

hadronic resonance gas: contributions from isosinglet \((G^{(1)} : \eta, \ldots) \) and isotriplet \((G^{(3)} : \pi, \ldots) \) mesons as well as isodoublet \((F^{(2)} : p, n, \ldots) \) and isoquartet \((F^{(4)} : \Delta, \ldots) \) baryons

\[
\frac{p(T, \mu_q, \mu_I)}{T^4} \simeq G^{(1)}(T) + G^{(3)}(T) \frac{1}{3} \left(2 \cosh \left(\frac{2\mu_I}{T} \right) + 1 \right) + F^{(2)}(T) \cosh \left(\frac{3\mu_q}{T} \right) \cosh \left(\frac{\mu_I}{T} \right) + F^{(4)}(T) \frac{1}{2} \cosh \left(\frac{3\mu_q}{T} \right) \left[\cosh \left(\frac{\mu_I}{T} \right) + \cosh \left(\frac{3\mu_I}{T} \right) \right]
\]

charge fluctuations at \(\mu_q = \mu_I = 0 \);

isospin quartet \(F^{(4)} \) contains baryons carrying charge 2

\[
R_{4,2}^Q \equiv \frac{\chi_4^Q}{\chi_2^Q} = \frac{4G^{(3)} + 3F^{(2)} + 27F^{(4)}}{4G^{(3)} + 3F^{(2)} + 9F^{(4)}} \rightarrow 1 \text{ for } T \rightarrow 0
\]

contribution of doubly charged baryons increases quartic relative to quadratic fluctuations
Ratios of quartic and quadratic fluctuations of charges in (2+1)-flavor QCD

RBC-Bielefeld, preliminary

baryon number fluctuation

charge fluctuation

chiral limit: ratios $\sim |T - T_c|^{-\alpha} + \text{regular}$

\[\Rightarrow \text{enhancement over resonance gas values} \]

\[\Rightarrow \text{may be observable in event-by-event fluctuations} \]

(valence) quark sector quickly ($T \gtrsim 1.5T_c$) behaves perturbative
Hadronic fluctuations and chiral symmetry restoration

- expect 2nd order transition in 3-d, O(4) symmetry class;

scaling field: \[t = \left| \frac{T - T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2, \quad \mu_{crit} = 0 \]

singular part: \[f_s(T, \mu_u, \mu_d) = b^{-1} f_s(t b^{1/(2 - \alpha)}) \sim t^{2 - \alpha} \]

\[\frac{\partial^2 \ln Z}{\partial \mu_q^2} \sim t^{1 - \alpha}, \quad \frac{\partial^4 \ln Z}{\partial \mu_q^4} \sim t^{-\alpha} \quad (\mu = 0) \]

- O(4)/O(2): \(\alpha < 0 \), small \(\Rightarrow \)

\[\langle (\delta N_q)^2 \rangle \text{ dominated by T-dependence of regular part} \]

\[\langle (\delta N_q)^4 \rangle \text{ develops a cusp} \]
Quadratic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

vanishing chemical potentials:

\[\chi_{Q}^{2} = \frac{1}{VT^3} \langle Q^2 \rangle \]

\[\chi_{B}^{2} = \frac{1}{VT^3} \langle N_{B}^2 \rangle \]

\[\chi_{S}^{2} = \frac{1}{VT^3} \langle N_{S}^2 \rangle \]

rapid approach to SB limit

⇒ smooth change of quadratic fluctuations across transition region

chiral limit: \(\chi_{2}^{B}, \chi_{2}^{Q} \sim |T - T_c|^{1-\alpha} + \text{regular} \)
Quartic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

vanishing chemical potentials:

\[\chi_Q^4 = \frac{1}{V T^3} \left(\langle Q^4 \rangle - 3\langle Q^2 \rangle^2 \right) \]

\[\chi_B^4 = \frac{1}{V T^3} \left(\langle N_B^4 \rangle - 3\langle N_B^2 \rangle^2 \right) \]

\[\chi_S^4 = \frac{1}{V T^3} \left(\langle N_S^4 \rangle - 3\langle N_S^2 \rangle^2 \right) \]

rapid approach to SB limit

⇒ large light quark number & charge fluctuations across transition region

chiral limit: \(\chi_B^4, \chi_Q^4 \sim |T - T_c|^{-\alpha} + \text{regular} \)
Deconfinement and χ-symmetry

- The chiral phase transition (i.e. at $m_q = 0$) is deconfining
- True in QCD, i.e. SU(3) + fermions in the fundamental representation
- SU(3) + fermions in the adjoint representation: $T_{decon} < T_\chi$
- The transition in QCD with physical quark masses is a crossover

In which sense is the transition deconfining and chiral symmetry restoring?

- **deconfinement:** heavy hadrons \Rightarrow light quarks and gluons; liberation of many new light degrees of freedom \Rightarrow rapid change in ϵ/T^4, s/T^3,

- **chiral symmetry restoration:** vanishing mass splittings, no new degrees of freedom \Rightarrow minor effect on bulk thermodynamics, but rapid change of chiral condensate
Deconfinement and χ-symmetry

The chiral phase transition (i.e. at $m_q = 0$) is deconfining
- true in QCD, i.e. SU(3) + fermions in the fundamental representation
- SU(3) + fermions in the adjoint representation: $T_{deconf} < T_{\chi}$

The transition in QCD with physical quark masses is a crossover

In which sense is the transition deconfining and chiral symmetry restoring?

- deconfinement: heavy hadrons \Rightarrow light quarks and gluons;
 liberation of many new light degrees of freedom
 \Rightarrow rapid change in ϵ/T^4, s/T^3, ...

- chiral symmetry restoration: vanishing mass splittings,
 no new degrees of freedom
 \Rightarrow minor effect on bulk thermodynamics, but
 rapid change of chiral condensate
χ-symmetry restoration: drop in condensate; peak in susceptibilities

\[
\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}
\]

$\chi_{\text{singlet}}/T^2$

hotQCD preliminary

0.75*p4fat3

asqtad: $m_l/m_s=0.1$

p4: $m_l/m_s=0.1$

0.05

$\Delta_{l,s}$

Tr_0

$N_\tau=8$

F. Karsch, xQCD, July 2008 – p. 29/32
Deconfinement and χ-symmetry restoration and bulk thermodynamics

χ-symmetry restoration: drop in condensate; peak in susceptibilities

$\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \psi\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \psi\psi \rangle_{s,0}}$

Illustrative fit:
$A(T-T_c)^{-1.32}$
Deconfinement and χ-symmetry and bulk thermodynamics

- Most prominent features of bulk thermodynamics are related to deconfinement.
- χ-symmetry restoration: drop in condensate; peak in susceptibilities.

Do they stay closely related in the continuum limit?
Conclusions

- **glue sticks**

 the interesting non-perturbative physics in QCD happens in the gluon sector

- **quarks add flavor**

 quarks add to the picture by ’modifying prefactors’ (in accord with dimensional reduction approach)

- **no glue ⇒ no binding**

 ’glue-free’ observables show early onset of perturbative behaviour
Conclusions

- non-perturbative QCD-EoS \sim pure gauge theory EoS

 the interesting non-perturbative physics in QCD happens in the gluon sector

- nothing qualitatively new in QCD with light quarks

 quarks add to the picture by 'modifying prefactors' (in accord with dimensional reduction approach) except close to T_c!!

- quantum numbers are carried by ”quarks” already close to T_c

 ’glue-free’ observables show early onset of perturbative behaviour
Finally...

the regime $T_c \leq T \lesssim (1.5 - 2.0)T_c$ differs from
the regime $T \gtrsim (1.5 - 2.0)T_c$

It is more difficult (impossible?) to describe it quantitatively
in terms of conventional theoretical high-T concepts:
perturbation theory, resummation, dimensional reduction
Finally...

- the regime \(T_c \leq T \lesssim (1.5 - 2.0) T_c \) differs from the regime \(T \gtrsim (1.5 - 2.0) T_c \)

 It is more difficult (impossible?) to describe it quantitatively in terms of conventional theoretical high-T concepts: perturbation theory, resummation, dimensional reduction

- Do we see new physics? \(\Rightarrow \) Quark Gluon Liquid

- or, remnants of old physics? \(\Rightarrow \) confinement